ACS Chemical Biology
Page 8 of 10
3
1. Efferth, T. (2007) Willmar Schwabe Award 2006:
independent and Bax-mediated intrinsic pathway in HepG2 cells,
Exp. Cell Res. 336, 308-317.
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
antiplasmodial and antitumor activity of artemisinin - from bench
to bedside, Planta Med. 73, 299-309.
32. Huang, C., Ba, Q., Yue, Q., Li, J., Li, J., Chu, R., and Wang, H.
(2013) Artemisinin rewires the protein interaction network in
cancer cells: network analysis, pathway identification, and target
prediction, Mol. BioSyst. 9, 3091-3100.
47. Zhang, F., Gosser, D. K., and Meshnick, S. R. (1992) Hemin-
catalyzed decomposition of artemisinin (qinghaosu), Biochem.
Pharmacol. 43, 1805-1809.
48. Czabotar, P. E., Lessene, G., Strasser, A., and Adams, J. M.
(2014) Control of apoptosis by the BCL-2 protein family:
implications for physiology and therapy, Nat. Rev. Mol. Cell Biol.
15, 49-63.
49. Adams, J. M., and Cory, S. (2007) The Bcl-2 apoptotic switch
in cancer development and therapy, Oncogene 26, 1324-1337.
50. Crespo-Ortiz, M. P., and Wei, M. Q. (2012) Antitumor activity
of artemisinin and its derivatives: from a well-known antimalarial
agent to a potential anticancer drug, J. Biomed. Biotechnol. 2012,
247597.
51. Leo, C. P., Hsu, S. Y., Chun, S. Y., Bae, H. W., and Hsueh, A. J.
(1999) Characterization of the antiapoptotic Bcl-2 family member
myeloid cell leukemia-1 (Mcl-1) and the stimulation of its
message by gonadotropins in the rat ovary, Endocrinology 140,
5469-5477.
52. Danial, N. N., and Korsmeyer, S. J. (2004) Cell death: critical
control points, Cell 116, 205-219.
53. She, Q. B., Solit, D. B., Ye, Q., O'Reilly, K. E., Lobo, J., and
Rosen, N. (2005) The BAD protein integrates survival signaling by
EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient
tumor cells, Cancer cell 8, 287-297.
54. Andreeff, M., Jiang, S., Zhang, X., Konopleva, M., Estrov, Z.,
Snell, V. E., Xie, Z., Okcu, M. F., Sanchez-Williams, G., Dong, J.,
Estey, E. H., Champlin, R. C., Kornblau, S. M., Reed, J. C., and Zhao,
S. (1999) Expression of Bcl-2-related genes in normal and AML
progenitors: changes induced by chemotherapy and retinoic acid,
Leukemia 13, 1881-1892.
55. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y.,
and Greenberg, M. E. (1997) Akt phosphorylation of BAD couples
survival signals to the cell-intrinsic death machinery, Cell 91, 231-
241.
56. del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., and
Nunez, G. (1997) Interleukin-3-induced phosphorylation of BAD
through the protein kinase Akt, Science 278, 687-689.
57. Donovan, N., Becker, E. B., Konishi, Y., and Bonni, A. (2002)
JNK phosphorylation and activation of BAD couples the stress-
activated signaling pathway to the cell death machinery, J. Biol.
Chem. 277, 40944-40949.
58. Zha, J., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S. J.
(1996) Serine phosphorylation of death agonist BAD in response
to survival factor results in binding to 14–3-3 not Bcl-x(L), Cell 87,
619-628.
59. Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong,
R. C., Augeri, D. J., Belli, B. A., Bruncko, M., Deckwerth, T. L., Dinges,
J., Hajduk, P. J., Joseph, M. K., Kitada, S., Korsmeyer, S. J., Kunzer,
A. R., Letai, A., Li, C., Mitten, M. J., Nettesheim, D. G., Ng, S. C.,
Nimmer, P. M., O'Connor, J. M., Oleksijew, A., Petros, A. M., Reed,
J. C., Shen, W., Tahir, S. K., Thompson, C. B., Tomaselli, K. J., Wang,
B., Wendt, M. D., Zhang, H., Fesik, S. W., and Rosenberg, S. H.
(2005) An inhibitor of Bcl-2 family proteins induces regression of
solid tumours, Nature 435, 677-681.
60. Luo, J., Zhu, W., Tang, Y., Cao, H., Zhou, Y., Ji, R., Zhou, X., Lu,
Z., Yang, H., Zhang, S., and Cao, J. (2014) Artemisinin derivative
artesunate induces radiosensitivity in cervical cancer cells in vitro
and in vivo, Radiat. Oncol. 9, 84.
33. Odaka, Y., Xu, B., Luo, Y., Shen, T., Shang, C., Wu, Y., Zhou,
H., and Huang, S. (2014) Dihydroartemisinin inhibits the
mammalian target of rapamycin-mediated signaling pathways in
tumor cells, Carcinogenesis 35, 192-200.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
34. Thanaketpaisarn, O., Waiwut, P., Sakurai, H., and Saiki, I.
(
2011) Artesunate enhances TRAIL-induced apoptosis in human
cervical carcinoma cells through inhibition of the NF-κB and
PI3K/Akt signaling pathways, Int. J. Oncol. 39, 279-285.
35. Cho, S., Oh, S., Um, Y., Jung, J.-H., Ham, J., Shin, W.-S., and
Lee, S. (2009) Synthesis of 10-substituted triazolyl artemisinins
possessing anticancer activity via Huisgen 1,3-dipolar
cylcoaddition, Bioorg. Med. Chem. Lett. 19, 382-385.
36. Hinds, M. G., Smits, C., Fredericks-Short, R., Risk, J. M., Bailey,
M., Huang, D. C., and Day, C. L. (2007) Bim, Bad and Bmf:
intrinsically unstructured BH3-only proteins that undergo a
localized conformational change upon binding to prosurvival Bcl-
2
targets, Cell Death Differ. 14, 128-136.
7. Yang, E., Zha, J., Jockel, J., Boise, L. H., Thompson, C. B., and
3
Korsmeyer, S. J. (1995) Bad, a heterodimeric partner for Bcl-xL and
Bcl-2, displaces bax and promotes cell death, Cell 80, 285-291.
38. Lomenick, B., Hao, R., Jonai, N., Chin, R. M., Aghajan, M.,
Warburton, S., Wang, J., Wu, R. P., Gomez, F., Loo, J. A.,
Wohlschlegel, J. A., Vondriska, T. M., Pelletier, J., Herschman, H. R.,
Clardy, J., Clarke, C. F., and Huang, J. (2009) Target identification
using drug affinity responsive target stability (DARTS), P. Natl.
Acad. Sci. USA 106, 21984-21989.
3
9. Pommier, Y. (2006) Topoisomerase
camptothecins and beyond, Nat. Rev. Cancer 6, 789-802.
0. Efferth, T. (2014) Activation of Mitochondria-Driven
I
inhibitors:
4
Pathways by Artemisinin and Its Derivatives, In Mitochondria: The
Anti-cancer Target for the Third Millennium (Neuzil, J., Pervaiz, S.,
and Fulda, S., Eds.), pp 135-150, Springer Netherlands.
41. Tran, K. Q., Tin, A. S., and Firestone, G. L. (2014) Artemisinin
triggers a G1 cell cycle arrest of human Ishikawa endometrial
cancer cells and inhibits cyclin-dependent kinase-4 promoter
activity and expression by disrupting nuclear factor-κB
transcriptional signaling, Anticancer Drugs 25, 270-281.
42. Efferth, T., Sauerbrey, A., Olbrich, A., Gebhart, E., Rauch, P.,
Weber, H. O., Hengstler, J. G., Halatsch, M.-E., Volm, M., Tew, K. D.,
Ross, D. D., and Funk, J. O. (2003) Molecular modes of action of
artesunate in tumor cell lines, Mol. Pharmacol. 64, 382-394.
43. Button, R. W., Lin, F., Ercolano, E., Vincent, J. H., Hu, B.,
Hanemann, C. O., and Luo, S. (2014) Artesunate induces necrotic
cell death in schwannoma cells, Cell Death Dis. 5, e1466.
44. Ooko, E., Saeed, M. E. M., Kadioglu, O., Sarvi, S., Colak, M.,
Elmasaoudi, K., Janah, R., Greten, H. J., and Efferth, T. (2015)
Artemisinin derivatives induce iron-dependent cell death
(ferroptosis) in tumor cells, Phytomedicine 22, 1045-1054.
45. Zhou, Y., Li, W., and Xiao, Y. (2016) Profiling of Multiple
Targets of Artemisinin Activated by Hemin in Cancer Cell
Proteome, ACS Chem. Biol.
46. Qin, G., Wu, L., Liu, H., Pang, Y., Zhao, C., Wu, S., Wang, X.,
and Chen, T. (2015) Artesunate induces apoptosis via a ROS-
ACS Paragon Plus Environment