Inorg. Chem. 2009, 48, 11559–11565 11559
DOI: 10.1021/ic901829v
Hydrothermal Synthesis and Luminescent Properties of Novel Ordered Sphere
CePO Hierarchical Architectures
4
†
,‡
,†
†,‡
†,‡
†,‡
†,‡
†,‡
Mei Yang, Hongpeng You,* Yuhua Zheng, Kai Liu, Guang Jia, Yanhua Song, Yeju Huang,
†
,‡
,†
Lihui Zhang, and Hongjie Zhang*
†
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese
‡
Academy of Sciences 130022, and Graduate University of the Chinese Academy of Sciences, Beijing 100049,
P. R. China
Received June 21, 2009
The ordered-sphere CePO hierarchical architectures have been successfully synthesized by a simple hydrothermal
4
method through the controlled growth of the CePO nanorods and self-assemble hierarchical structure under various
4
reaction conditions. The evolution of the morphology of the samples has been investigated in detail. It was found that
the coexistence of citric acid and cetaltrimethylammonium bromide in the reaction system plays an important role in the
formation of the spherical CePO hierarchical architectures. A possible mechanism of the formation and growth of the
4
hierarchical structure was suggested according to the experimental results and analysis. The effects of the reaction
time as well as the variation of the morphologies on the luminescent properties of the products were also studied.
1
. Introduction
Recently, muchattention has beenfocusedon the synthesis
and photoluminescence properties of lanthanide orthopho-
In recent years, large-scale hierarchical self-assembly struc-
sphates (LnPO ) and lanthanide (III)-doped lanthanide
4
tures from basic building blocks with specific morphology
and novel properties have attracted considerable interest for
their potential technology applications because their unique
properties are determined by their morphology, size, and
dimensions. Many efforts have thus been made recently to
develop new methods for the fabrication of hierarchical
ordered structures in material chemistry. Although some
progress has been made in the self-assembly of highly
organized building blocks of metals, semiconductors,
copolymers, organic-inorganic hybrid materials, and bio-
materials based on different driving mechanisms, effective
large-scale hierarchical self-assembly of some functional
materials is still a challenge to material scientists.
3
þ
orthophosphates (LnPO :Ln ) because of their potential
4
9
,10
11,12
applications in color displays,
field-effect transistors,
13
14
optoelectronics, medical and biological labels, solar
15,16
cells,
17,18
and light sources.
To date, various lanthanide
orthophosphate nanomaterials, such as zero-dimensional
2
0,21
22,23
1,2
nanoparticles,
one-dimensional (1D) structures,
and
24
core/shell structures, have been successfully synthesized.
3
4,5
(
9) Lee, M. H.; Oh, S. G.; Yi, S. C.; Seo, D. S.; Hong, J. P.; Kim, C.; Yoo,
Y. K.; Yoo, J. S. J. Electrochem. Soc. 2000, 147, 3139.
10) Wang, Q. H.; Setlur, A. A.; Lauerhaas, J. M.; Dai, J. Y.; Seelig, W.;
Chang, R. P. H. Appl. Phys. Lett. 1998, 72, 2912.
11) Sun, B.; Sirringhaus, H. Nano Lett. 2005, 5, 2408.
(12) Talapin, D. V.; Murray, C. B. Science 2005, 310, 86.
6
7
8
(
(
(13) Huang, Y.; Lieber, C. M. Pure Appl. Chem. 2004, 76, 2051.
(14) Wang, L.; Yang, C. Y.; Tan, W. H. Nano Lett. 2005, 5, 37.
(15) Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D.
*
To whom correspondence should be addressed. Tel.: 86431- 85692798.
Nat. Mater. 2005, 4, 455.
Fax: 86431-85698041. E-mail: hpyou@ciac.jl.cn (H.Y.), hongjie@
ciac.jl.cn (H.Z.).
(16) Shalav, A.; Richards, B. S.; Trupke, T.; Kramer, K. W.; Gudel, H. U.
Appl. Phys. Lett. 2005, 86, 13505.
(
1) Zhu, L. P.; Xiao, H. M.; Zhang, W. D.; Yang, Y.; Fu, S. Y. Cryst.
Growth Des. 2008, 8, 1113.
2) Jung, S. H.; Oh, E.; Lee, K. H; Yang, Y.; Park, C. G.; Park, W. J.;
Jeong, S. H. Cryst. Growth Des. 2008, 8, 1265.
3) Kaltenpoth, G.; Himmelhaus, M.; Slansky, L.; Caruso, F.; Grunze,
M. Adv. Mater. 2003, 15, 1113.
4) Yada, M.; Taniguchi, C.; Torikai, T.; Watari, T.; Furuta, S.; Katsuki,
H. Adv. Mater. 2004, 16, 1448.
5) Fan, H. Y.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H.;
L oꢀ pez, G. P.; Brinker, C. J. Science 2004, 304, 567.
6) (a) Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903. (b) Ikkala, O.;
(17) Choi, H. J.; Johnson, J. C.; He, R. R.; Lee, S. K.; Kim, F.;
Pauzauskie, P.; Goldberger, J.; Saykally, R. J.; Yang, P. D. J. Phys. Chem.
B 2003, 107, 8721.
(18) Johnson, J. C.; Choi, H. J.; Knutsen, K. P.; Schaller, R. D.; Yang, P.
D.; Saykally, R. J. Nat. Mater. 2002, 1, 106.
(20) Schuetz, P.; Caruso, F. Chem. Mater. 2002, 14, 4509.
(21) Xing, Y.; Li, M.; Davis, S. A.; Mann, S. J. Phys. Chem. B. 2006,
110, 3.
(
(
(
(
(22) Meyssamy, H.; Riwotzki, K.; Kornowski, A.; Naused, S.; Haase, M.
Adv. Mater. 1999, 11, 840.
(23) Buissette, V.; Moreau, M.; Gacoin, T.; Boilo, J. P. Adv. Funct. Mater.
(
Brinke, G. T. Science 2002, 295, 2407.
2006, 16, 351.
(7) Du, J.; Chen, Y. Angew. Chem., Int. Ed. 2004, 43, 5084.
(8) Shenton, W.; Pum, D.; Sleytr, U. B.; Mann, S. Nature 1997, 389, 585.
(24) Lehmann, O.; K o€ mpe, K.; Haase, M. J. Am. Chem. Soc. 2004, 126,
14935.
r 2009 American Chemical Society
Published on Web 11/13/2009
pubs.acs.org/IC