Amphiphilic Amylose-g-poly(meth)acrylate Copolymers
Biomacromolecules, Vol. 12, No. 2, 2011 397
(13) Kaneko, Y.; Matsuda, S.-I.; Kadokawa, J.-I. Biomacromolecules 2007,
8, 3959–3964.
amphiphilic copolymer assemblies with a denser hydrophobic
core. Accordingly, the Hildebrand solubility parameters (δ) of
the three synthetic homopolymers are rather similar: δ(PBA)
(14) Appelhans, D.; Komber, H.; Quadir, M. A.; Richter, S.; Schwarz, S.;
van der Vlist, J.; Aigner, A.; Mu¨ller, M.; Loos, K.; Seidel, J.; Arndt,
K.-F.; Haag, R.; Voit, B. Biomacromolecules 2009, 10, 1114–1124.
(15) Roy, D.; Semsarilar, M.; Guthrie, J. T.; Perrier, S. Chem. Soc. ReV.
2009, 38, 2046–2064.
) 19.7; δ(PBMA) ) 19.1; δ(PHMA) ) 18.8; and δ(H2O) )
68
48.0 [MPa]1/2
.
(16) Jenkins, D. W.; Hudson, S. M. Chem. ReV. 2001, 101, 3245–3273.
(17) Zampano, G.; Bertoldo, M.; Bronco, S. Carbohydr. Polym. 2009, 75,
22–31.
(18) Bledzki, A. K.; Gassan, J. Prog. Polym. Sci. 1999, 24, 221–274.
(19) Mansson, P.; Westfelt, L. J. Polym. Sci., Polym. Chem. 1981, 19, 1509–
1515.
Conclusions
The results obtained in the grafting “onto” experiments
evidenced that the Cu(I) catalyzed azide-alkyne [3 + 2]-dipolar
cycloaddition (“click”) is an efficient and versatile procedure
for the hydrophobic modification of amylose, opening the way
to the synthesis of well-defined hybrid polysaccharide structures
with advanced functional properties. The oxidation-reductive
amination reaction sequence was shown to be an easy and
efficient method for functionalizing polysaccharides with alkynyl
groups under mild reaction conditions involving moderate
heating in air, with conservation of the macromolecular chain.
It is expected that the main drawback of a moderate yield in
the reductive amination stage will be overcome by further
research work. One important feature of the “click” grafting of
polymeric chains onto the modified polysaccharide is that it can
be conveniently exploited for the synthesis of graft copolymers
with tunable grafting degree. Indeed, this last parameter can be
controlled in different ways, such as by varying the fractional
amount of grafting chains in the reaction feed or by using a
polysaccharide with different content of alkynyl groups.
The versatility of the proposed procedure was confirmed
through the successful synthesis of graft copolymers using
different grafting chains, namely, PBA, PBMA, PHMA, and
PDMAEMA.
(20) Tsubokawa, N.; Iida, T.; Takayama, T. J. Appl. Polym. Sci. 2000, 75,
515–522.
(21) Mourya, V. K.; Inamdar, N. N. React. Funct. Polym. 2008, 68, 1013–
1051.
(22) Bhattarai, N.; Matsen, F. A.; Zhang, M. Macromol. Biosci. 2005, 5,
107–111.
(23) Liu, L.; Li, F.; Guo, S. Macromol. Biosci. 2006, 6, 855–861.
(24) Karakasyan, C.; Lack, S.; Brunel, F.; Maingault, P.; Hourdet, D.
Biomacromolecules 2008, 9, 2419–2429.
(25) Bokias, G.; Mylonas, Y.; Staikos, G.; Bumbu, G. G.; Vasile, C.
Macromolecules 2001, 34, 4958–4964.
(26) Houdet, D.; L’Alloret, F.; Audebert, R. Polymer 1997, 38, 2535–2547.
(27) Cho, K. Y.; Chung, T. W.; Kim, B. C.; Kim, M. K.; Lee, J. H.; Wee,
W. R.; Cho, C. S. Int. J. Pharm. 2003, 24, 83–90.
(28) Fleury, E.; Tizzotti, M.; Destarac, M.; Labeau, M.-P.; Hamaide, T.;
Drockenmuller, E. Patent WO2009063082 A1 - 2009-05-22.
(29) Tizzotti, M.; Creuzet, C.; Labeau, M.-P.; Hamaide, T.; Boisson, F.;
Drockenmuller, E.; Charlot, A.; Fleury, E. Macromolecules 2010, 43,
6843–6852.
(30) Tankam, P. F.; Mu¨ller, R.; Mischnick, P.; Hopf, H. Carbohydr. Res.
2007, 342, 2049–2060.
(31) Liebert, T.; Ha¨nsch, C.; Heinze, T. Macromol. Rapid Commun. 2006,
27, 208–213.
(32) Mortisen, D.; Peroglio, M.; Alini, M.; Aglin, D. Biomacromolecules
2010, 11, 1261–1272.
(33) Crescenzi, V.; Cornelio, L.; Di Meo, C.; Nardecchia, S.; Lamanna,
R. Biomacromolecules 2007, 8, 1844–1850.
The obtained graft copolymers were shown to self-assemble
into nanoparticle aggregates in water when the grafted synthetic
polymer chains were sufficiently hydrophobic to make the
hybrid copolymer amphiphilic.
(34) Yuan, W.; Zhao, Z.; Gu, S.; Ren, J. J. Polym. Sci., Polym. Chem.
2010, 48, 3476–3486.
(35) Hasegawa, T.; Umeda, M.; Numata, M.; Fujisawa, T.; Haraguchi, S.;
Sakurai, K.; Shinkai, S. Chem. Lett. 2006, 35, 82–83.
(36) Hasegawa, T.; Umeda, M.; Numata, M.; Li, C.; Bae, A. H.; Fujisawa,
T.; Haraguchi, S.; Sakuraib, K.; Shinkai, S. Carbohydr. Res. 2006,
341, 35–40.
Acknowledgment. We wish to thank Professor Francesco
Ciardelli (University of Pisa, Italy) and Professor Nicola Tirelli
(University of Manchester, U.K.) for helpful discussions and
suggestions.
(37) Numata, M.; Okumura, S.; Kimura, T.; Sakurai, K.; Shinkai, S. Org.
Biomol. Chem. 2007, 5, 2404–2412.
(38) Pohl, M.; Schaller, J.; Meister, F.; Heinze, T. Macromol. Rapid
Commun. 2008, 29, 142–148.
(39) Hafre´n, J.; Zou, W.; Co´rdova, A. Macromol. Rapid Commun. 2006,
27, 1362–1366.
(40) Bernard, J.; Save, M.; Arathoon, B.; Charleux, B. J. Polym. Sci., Polym.
Chem. 2008, 46, 2845–2857.
(41) Zampano, G.; Bertoldo, M.; Ciardelli, F. React. Funct. Polym. 2010,
70, 272–281.
(42) Iha, R. K.; Wooley, K. L.; Nystrom, A. M.; Burke, D. J.; Kade, M. J.;
Hawker, C. J. Chem. ReV. 2009, 109, 5620–5686.
(43) Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun. 2007,
28, 15–54.
(44) Binder, W. H.; Sachsenhofer, R. Macromol. Rapid Commun. 2008,
29, 952–981.
(45) Lodge, T. P. Macromolecules 2009, 42, 3827–3829.
(46) Bao, H.; Li, L.; Gan, L. H.; Ping, Y.; Li, J.; Ravi, P. Macromolecules
2010, 43, 5679–5687.
(47) Braunecker, W. A.; Brown, W. C.; Morelli, B. C.; Tang, W.; Poli,
R.; Matyjaszewski, K. Macromolecules 2007, 40, 8576–8585.
(48) Ehrenfreund-Kleinmana, T.; Gazit, Z.; Gazit, D.; Azzam, T.; Golenser,
J.; Domb, A. J. Biomaterials 2002, 23, 4621–4631.
(49) Eliyahu, H.; Siani, S.; Azzam, T.; Domb, A. J.; Barenholz, Y.
Biomaterials 2006, 27, 1646–1655.
(50) Azzam, T.; Eliyahu, H.; Shapira, L.; Linial, M.; Barenholz, Y.; Domb,
A. J. J. Med. Chem. 2002, 45, 1817–1824.
(51) Azzam, T.; Raskin, A.; Makovitzki, A.; Brem, H.; Vierling, P.; Lineal,
M.; Domb, A. J. Macromolecules 2002, 35, 9947–9953.
Supporting Information Available. Details of the light
scattering data analysis procedure; synthesis and spectroscopy
characterization of 2-bromo-isobutyric acid 3-azidopropylester
(BiBAP) and ethyl-2-azidobutyrate. This material is available
References and Notes
(1) Kataoka, K.; Harada, A.; Nagasaki, Y. AdV. Drug DeliVery ReV. 2001,
47, 113–131.
(2) Savic, R.; Luo, L. B.; Eisenberg, A.; Maysinger, D. Science 2003,
300, 615–618.
(3) Bae, Y.; Nishiyama, N.; Kataoka, K. Bioconjugate Chem. 2007, 18,
1131–1139.
(4) Jabr-Milane, L.; Vlerken, L.; Devalapally, H.; Shenoy, D.; Komareddy,
S.; Bhavsar, M.; Amiji, M. J. Controlled Release 2008, 130, 121–
128.
(5) Zhang, L.; Lin, J.; Lin, S. J. Phys. Chem. B 2007, 111, 9209–9217.
(6) Cansell, M.; Parisel, C.; Jozefonvicz, J.; Letouneur, D. J. Biomed.
Mater. Res. 1999, 44, 140–148.
(7) Francis, M.; Lavoie, L.; Winnik, F.; Leroux, J. C. Eur. J. Pharm. Sci.
2003, 56, 337–346.
(8) Na, K.; Lee, T. B.; Park, K.-H.; Shin, E.-K.; Lee, Y.-B.; Choi, H.-K.
Eur. J. Pharm. Sci. 2003, 18, 165–173.
(9) Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. AdV. Drug DeliVery
ReV. 2008, 60, 1650.
(10) Bhattacharya, A.; Misra, B. N. Prog. Polym. Sci. 2004, 29, 767–814.
(11) Borner, H. G.; Matyjaszewski, K. Macromol. Symp. 2002, 177, 1–15.
(12) Zhao, B.; Brittain, W. J. Prog. Polym. Sci. 2000, 25, 677–710.