Inorganic Chemistry
Article
greater for PTD-OMe (log β (PTD-OMe) = 10.8 ± 0.4) than
(4) Weaver, B.; Kappelmann, F. A. TALSPEAK: a new method of
separating americium and curium from the lanthanides by extraction from
an aqueous solution of an aminopolyacetic acid complex with a
monoacidic organophosphate or phosphonate, USAEC report ORNL-
3
for PTD (log β (PTD) = 9.9 ± 0.5).
3
Unfortunately, in solvent extraction experiments (involving
.44 mol/L nitric acid in the aqueous phase) PTD-OMe
0
3
(
559; Oak Ridge National Laboratory: Oak Ridge, TN, 1964.
5) Nilsson, M.; Nash, K. L. Review article: a review of the
performed inferior to PTD. This was due to the smaller
amount of free ligand present under the used solvent extraction
conditions, although it was the stronger ligand. Therefore,
protonation outcompeted complexation under solvent extrac-
tion conditions.
NMR experimental data and DFT calculations confirmed
protonation of PTD-OMe to occur at the pyridine nitrogen
atom. The lower selectivity of PTD-OMe compared to PTD
was explained by an increased polarizability of the coordinating
nitrogen atoms, actually leaving the small zone of optimum
polarizability.
development and operational characteristics of the TALSPEAK
process. Solvent Extr. Ion Exch. 2007, 25 (6), 665−701.
(6) Geist, A.; Mullich, U.; Magnusson, D.; Kaden, P.; Modolo, G.;
̈
Wilden, A.; Zevaco, T. Actinide(III)/Lanthanide(III) Separation Via
Selective Aqueous Complexation of Actinides(Iii) Using a Hydro-
philic 2,6-Bis(1,2,4-Triazin-3-yl)-Pyridine in Nitric Acid. Solvent Extr.
Ion Exch. 2012, 30 (5), 433−444.
(7) Gelis, A. V.; Lumetta, G. J. Actinide lanthanide separation
processALSEP. Ind. Eng. Chem. Res. 2014, 53 (4), 1624−1631.
(8) Wilden, A.; Modolo, G.; Kaufholz, P.; Sadowski, F.; Lange, S.;
Clearly, the positive effect of methoxy substitution observed
Sypula, M.; Magnusson, D.; Mullich, U.; Geist, A.; Bosbach, D.
̈
19−21
for some lipophilic N-heterocyclic extracting agents
is
Laboratory-scale counter-current centrifugal contactor demonstration
of an innovative-SANEX process using a water soluble BTP. Solvent
Extr. Ion Exch. 2015, 33 (2), 91−108.
overcompensated by increased susceptibility to protonation in
the case of the water-soluble PTD complexing agents.
(
9) Wagner, C.; Mullich, U.; Geist, A.; Panak, P. J. Selective
̈
Extraction of Am(III) from PUREX Raffinate: The AmSel System.
ASSOCIATED CONTENT
Supporting Information
■
Solvent Extr. Ion Exch. 2016, 34 (2), 103−113.
*
S
(10) Heathman, C. R.; Grimes, T. S.; Jansone-Popova, S.; Roy, S.;
Bryantsev, V. S.; Zalupski, P. R. Influence of a pre-organized N-donor
group on the coordination of trivalent actinides and lanthanides by an
aminopolycarboxylate complexant. Chem. - Eur. J. 2019, 25 (10),
2
(
545−2555.
Slope analyses, species distribution for the pKa
determination, and Cm(III) fluorescence lifetime
measurements not shown in the manuscript (PDF)
11) Heres, X.; Sorel, C.; Miguirditchian, M.; Cames, B.; Hill, C.;
́
̀
̀
Bisel, I.; Espinoux, D.; Eysseric, C.; Baron, P.; Lorrain, B. Results of
recent counter-current tests on An(III)/Ln(III) separation using TODGA
extractant, Proceedings of the GLOBAL 2009 ConferenceThe
Nuclear Fuel Cycle: Sustainable Options & Industrial Perspectives,
Paris, France, Sept 6−11, 2009; pp 1127−1132.
AUTHOR INFORMATION
■
*
*
*
(
12) Lewis, F. W.; Harwood, L. M.; Hudson, M. J.; Geist, A.;
Kozhevnikov, V. N.; Distler, P.; John, J. Hydrophilic sulfonated bis-
,2,4-triazine ligands are highly effective reagents for separating
1
actinides(III) from lanthanides(III) via selective formation of aqueous
actinide complexes. Chem. Sci. 2015, 6 (8), 4812−4821.
(13) Kaufholz, P.; Modolo, G.; Wilden, A.; Sadowski, F.; Bosbach,
D.; Wagner, C.; Geist, A.; Panak, P. J.; Lewis, F. W.; Harwood, L. M.
Solvent Extraction and Fluorescence Spectroscopic Investigation of
the Selective Am(III) Complexation with TS-BTPhen. Solvent Extr.
Ion Exch. 2016, 34 (2), 126−140.
ORCID
Author Contributions
All authors have given approval to the final version of the
manuscript. All authors contributed equally.
(
14) Macerata, E.; Mossini, E.; Scaravaggi, S.; Mariani, M.; Mele, A.;
Funding
Panzeri, W.; Boubals, N.; Berthon, L.; Charbonnel, M. C.; Sansone,
F.; Arduini, A.; Casnati, A. Hydrophilic Clicked 2,6-Bis-triazolyl-
pyridines Endowed with High Actinide Selectivity and Radiochemical
Stability: Toward a Closed Nuclear Fuel Cycle. J. Am. Chem. Soc.
This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (Project GENIORS, Grant
No. 755171). This work has benefited from the equipment and
framework of the COMP-HUB Initiative, funded by the
2
(
016, 138 (23), 7232−7235.
15) Bourg, S.; Geist, A.; Adnet, J.-M.; Rhodes, C.; Hanson, B.
GENIORS, a new European project addressing Gen IV integrated oxide
fuels recycling strategies, Proceedings of GLOBAL 2017, International
Nuclear Fuel Cycle Conference, Seoul, Korea, Sept 24−29, 2017.
“Departments of Excellence” program of the Italian Ministry
for Education, University and Research (MIUR, 2018−2022)
Notes
The authors declare no competing financial interest.
(16) Madic, C.; Hudson, M. J. In High-level liquid waste Partitioning
by means of completely incinerable extractants, EUR 18038; European
Commission: Luxembourg, 1998.
REFERENCES
(17) Wagner, C.; Mossini, E.; Macerata, E.; Mariani, M.; Arduini, A.;
Casnati, A.; Geist, A.; Panak, P. J. Time-Resolved Laser Fluorescence
Spectroscopy Study of the Coordination Chemistry of a Hydrophilic
CHON [1,2,3-Triazol-4-yl]pyridine Ligand with Cm(III) and Eu-
■
(
1) Modolo, G.; Geist, A.; Miguirditchian, M. Minor actinide
separations in the reprocessing of spent nuclear fuels: recent advances
in Europe. In Reprocessing and Recycling of Spent Nuclear Fuel, Taylor,
R., Ed.; Woodhead Publishing: Cambridge, UK, 2015.
2) Joly, P.; Boo, E. SACSESS roadmapactinide separation
processes; SACSESS, 2015.
3) OECD-NEA State-of-the-art report on the progress of nuclear fuel
(
III). Inorg. Chem. 2017, 56 (4), 2135−2144.
(
18) Mossini, E.; Macerata, E.; Wilden, A.; Kaufholz, P.; Modolo, G.;
(
Iotti, N.; Casnati, A.; Geist, A.; Mariani, M. Optimization and Single-
Stage Centrifugal Contactor Experiments with the Novel Hydrophilic
Complexant PyTri-Diol for the i-SANEX Process. Solvent Extr. Ion
Exch. 2018, 36 (4), 373−386.
(
cycle chemistry, NEA No. 7267; OECD, Nuclear Energy Agency: Paris,
France, 2018.
I
Inorg. Chem. XXXX, XXX, XXX−XXX