COMMUNICATIONS
Valentin N. Bochatay et al.
2006, 71, 8755–8760; c) W. Rao, D. Susanti, P. V. H.
Chan, J. Am. Chem. Soc. 2011, 133, 15248–15251.
[4] For syntheses from 1,3-dien-2-ylic electrophiles through
SN2’ processes, see: a) M. Ogasawara, Y. Ge, K.
Uetake, T. Takahashi, Org. Lett. 2005, 7, 5697–5700;
b) S. Redon, A.-L. Berkaoui, X. Pannecoucke, F. Out-
urquin, Tetrahedron 2007, 63, 3707–3717.
[5] For slected syntheses by the addition of propargyl/al-
lenyl metals from imine derivatives, see: a) Y.-Y.
Huang, A. Chakrabarti, N. Morita, U. Schneider, S. Ko-
bayashi, Angew. Chem. 2011, 123, 11317–11320; Angew.
Chem. Int. Ed. 2011, 50, 11121–11124; b) M. Sai, H.
Yorimitsu, K. Oshima, Angew. Chem. 2011, 123, 3352–
3356; Angew. Chem. Int. Ed. 2011, 50, 3294–3298;
c) N. W. Mszar, F. Haeffner, A. H. Hoveyda, J. Am.
Chem. Soc. 2014, 136, 3362–3365.
[6] For syntheses by the aza-Morita–Baylis–Hillman reac-
tion using allenic carbonyls, see: a) B. J. Cowen, L. B.
Saunders, S. J. Miller, J. Am. Chem. Soc. 2009, 131,
6105–6107; b) L. B. Saunders, B. J. Cowen, S. J. Miller,
Org. Lett. 2010, 12, 4800–4803; c) T. Hashimoto, K.
Sakata, F. Tamakuni, M. J. Dutton, K. Maruoka, Nat.
Chem. 2013, 5, 240–244.
[7] For syntheses by the homologation of alkynes, see: a) J.
Kuang, S. Ma, J. Am. Chem. Soc. 2010, 132, 1786–1787;
b) H. Luo, S. Ma, Eur. J. Org. Chem. 2013, 3041–3048;
c) Y. H. Shin, M. Maheswara, J. Y. Hwang, E. J. Kang,
Eur. J. Org. Chem. 2014, 2305–2311.
ira, C. Botuha, F. Chemla, A. PØrez-Luna, Chem. Soc.
Rev. 2009, 38, 1162–1186.
[16] The study has been undertaken with racemic trans and
cis aziridines 1. However these compounds can also be
prepared in enantiomerically pure form. For relevant
references, see: a) F. Chemla, F. Ferreira, Synlett 2004,
983–986; b) F. Chemla, F. Ferreira, J. Org. Chem. 2004,
69, 8244–8250; c) F. Ferreira, M. Audouin, F. Chemla,
Chem. Eur. J. 2005, 11, 5269–5278; d) C. Botuha, F.
Chemla, F. Ferreira, A. PØrez-Luna, B. Roy, New. J.
Chem. 2007, 31, 1552–1567; e) C. Botuha, F. Chemla, F.
Ferreira, J. Louvel, A. PØrez-Luna, Tetrahedron: Asym-
metry 2010, 21, 1147–1153.
[17] This reagent is well established to afford allenylsilanes
through the SN2’ silylation of propargylic electrophiles.
For relevant examples, see: a) I. Fleming, N. K. Terrett,
J. Organomet. Chem. 1984, 264, 99–118; b) R. M. Bor-
zilleri, S. M. Weinreb, M. Parvez, J. Am. Chem. Soc.
1995, 117, 10905–10913; c) S. Hirashima, S. Aoyagi, C.
Kibayashi, J. Am. Chem. Soc. 1999, 121, 9873–9874;
d) J. A. Marshall, K. Maxson, J. Org. Chem. 2000, 65,
630–633; e) K. Sakurai, K. Tanino, Tetrahedron Lett.
2015, 56, 496–499. For catalytic in copper approaches,
see: f) H. Ohmiya, H. Ito, M. Sawamura, Org. Lett.
2009, 11, 5618–5620; g) D. J. Vyas, C. K. Hazra, M.
Oestreich, Org. Lett. 2011, 13, 4462–4465; h) C. K.
Hazra, M. Oestreich, Org. Lett. 2012, 14, 4010–4013.
[18] It is worthy of mention that lithio alkylcyanocuprates
RCu(CN)Li react cleanly with N-tert-butanesulfinyle-
thynylaziridines 1 at À808C in THF. In this case, no
formation of the vinylic side-products (by the double
addition of the alkyl R group) was observed. This
result is similar to that reported with N-arylsulfonyle-
thynylaziridines (see ref.[13a]). As an example, the reac-
tion of n-BuCu(CN)Li (4 equiv.) with 1a afforded the
corresponding 4-aminoallene as a single isomer in 73%
isolated yield. See the Supporting Information for
more details.
[8] For syntheses by the intramolecular [3,3]-sigmatropic
rearrangement of propargyl a-amino esters, see: a) T.
Okada, N. Oda, H. Suzuki, K. Sakaguchi, Y. Ohfune,
Tetrahedron Lett. 2010, 51, 3765–3768; b) T. Okada, K.
Sakaguchi, T. Shinada, Y. Ohfune, Tetrahedron Lett.
2011, 52, 5744–5746; c) J. Brioche, C. Meyer, J. Cossy,
Org. Lett. 2013, 15, 1626–1629; d) S. Chuprakov, B. T.
Worrell, N. Selander, R. K. Sit, V. V. Fokin, J. Am.
Chem. Soc. 2014, 136, 195–201.
[9] For a recent review, see: C.-H. Ding, X.-L. Hou, Chem.
Rev. 2011, 111, 1914–1937.
[19] T. Harada, T. Katsuhira, A. Osada, K. Iwasaki, K. Mae-
jima, A. Oku, J. Am. Chem. Soc. 1996, 118, 11377–
11390.
[10] H. Ohno, A. Toda, Y. Miwa, N. Fujii, Y. Takemoto, T.
Tanaka, T. Ibuka, Tetrahedron 2000, 56, 2811–2820.
[11] H. Ohno, Chem. Rev. 2014, 114, 7784–7814.
[12] Mts=2,4,6-trimethylbenzenesulfonyl, Mtr=4-methoxy-
2,3,6-trimethylbenzenesulfonyl, Ts=benzenesulfonyl.
[13] a) H. Ohno, A. Toda, Y. Miwa, T. Taga, N. Fujii, T.
Ibuka, Tetrahedron Lett. 1999, 40, 349–352; b) B. T.
Kelley, M. M. JoulliØ, Tetrahedron: Asymmetry 2013,
24, 1233–1239.
[20] I. Fleming, R. S. Roberts, S. C. Smith, J. Chem. Soc.
Perkin Trans. 1 1998, 1209–1214.
[21] CCDC 1051081 contains the supplementary crystallo-
graphic data for this paper. These data can be obtained
free of charge from The Cambridge Crystallographic
[22] T. Katsuhira, T. Harada, K. Maejima, A. Osada, A.
Oku, J. Org. Chem. 1993, 58, 6166–6168.
[23] A. Denichoux, L. Debien, M. Cyklinsky, M. Kaci, F.
Chemla, F. Ferreira, A. PØrez-Luna, J. Org. Chem.
2013, 78, 134–145.
[14] Ns=4-nitrobenzenesulfonyl. For the cleavage of N-Ns
amine derivatives, see: T. Fukuyama, C.-K. Jow, M.
Cheung, Tetrahedron Lett. 1995, 36, 6373–6374.
[15] For reviews, see: a) M. T. Robert, M. A. Herbage, J. A.
Ellman, Chem. Rev. 2010, 110, 3600–3740; b) F. Ferre-
2814
ꢀ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2015, 357, 2809 – 2814