VENGAIAN ET AL.
7
and PTRH+Zn2+ = 2.3074 eV, respectively. This result demonstrated
that the energy gaps of the LUMO and the HOMO in the Zn2+ com-
plex were small when compared with that of the PTRH sensor.[46]
[15] L. S. Laxmeshwar, M. S. Jadhav, J. F. Akki, P. Raikar, J. Kumar, O.
Prakash, U. S. Raikar, Optic. Laser Tech. 2017, 91, 27.
[16] N. Ozbek, S. Akman, Food Chem. 2016, 200, 245.
[17] X. Mao, Y. Zhang, J. Liu, M. Wang, Y. Qian, Z. Zhang, Y. Qi, C. Gao,
RSC Adv. 2016, 6, 48699.
|
4
CONCLUSION
[18] H. Watanabe, S. Berman, D. S. Russell, Talanta 1972, 19, 1363.
[19] A. Meiri, K. Assili, J. Electroanal. Chem. 2016, 767, 134.
We successfully synthesized a new fluorescence sensor, PTRH, com-
posed of phenothiazine (the energy donor) coupled to a rhodamine
(the energy acceptor) moiety that showed specific colorimetric,
fluorogenic, and ratiometric fluorescence responses towards Zn2+ ions
through the FRET process. Upon binding to Zn2+ ions, the spirolactam
ring in rhodamine opened and induced an excitation energy transfer
from phenothiazine to rhodamine, evident from the large spectral
overlap of the donor emission band and the acceptor absorption band.
Selective binding of Zn2+ ions was highly spontaneous, with a fluores-
cence colour change from yellowish green to pink. The PTRH sensor
provides a reasonable lowest detection limit over the nanomolar range
for Zn2+ ions. Nontoxicity, permeability and fluorescence transparency
of the sensor make it useful as an imaging agent for detecting Zn2+
ions in living cells.
[20] J. Q. Jiang, C. L. Sun, Z. F. Shi, Z. G. Xu, H. L. Zhang, Sens. Actuators B
Chem. 2015, 220, 659.
[21] X. J. Bai, J. Ren, J. Zhou, Z. B. Song, Heter. Comm. 2018, 24, 135.
[22] Y. W. Choi, G. R. You, J. J. Lee, C. Kim, Inorg. Chem. Comm. 2016, 63,
35.
[23] K. Muthu Vengaian, C. Denzil Britto, K. Sekar, G. Sivaraman, S.
Singaravadivel, Sens. Actuators B Chem. 2016, 235, 232.
[24] K. Wechakorna, K. Suksen, P. Piyachaturawat, P. Kongsaereea, Sens.
Actuators B Chem. 2016, 228, 270.
[25] G. Xie, Y. Shi, F. Hou, H. Liu, L. Huang, P. Xi, F. Chen, Z. Zeng, Eur. J.
Inorg. Chem. 2012, 2012, 327.
[26] C. Wu, Y. Ikejiri, J.‐L. Zhao, X.‐K. Jiang, X.‐L. Ni, X. Zeng, C. Redshaw,
T. Yamato, Sens. Actuators B Chem. 2016, 228, 480.
[27] T. Xu, H. Duan, X. Wang, X. Meng, J. Bu, Spectrochimica Acta Part A:
Mole. Bio. Mol. Spec. 2015, 138, 603.
[28] J. Lee, J. I. Lee, M.‐J. Park, Y. K. Jung, N. S. Cho, H. J. Cho, D.‐H.
Hwang, S.‐K. Lee, J.‐H. Park, J. Hong, H. Y. Chu, H. K. Shim,
J. Polym. Sci. A Polym. Chem. 2007, 45, 1236.
ACKNOWLEDGEMENTS
K. Sekar thanks the University Grants Commission, New Delhi, India
[29] M. J. Cho, J. Y. Kim, J. H. Kim, S. H. Lee, L. R. Dalton, D. H. Choi, Bull.
Korean Chem. Soc. 2005, 26, 77.
for financial support. (UGC‐MRP no. 43‐186/2014 (SR)).
[30] Y. Xua, H. Lib, X. Menga, J. Liu, L. Suna, X. Fanb, L. Shi, New J. Chem.
2016, 40, 3543.
ORCID
[31] K. Muthu Vengaian, C. Denzil Britto, K. Sekar, G. Sivaraman, S.
Singaravadivel, RSC Adv. 2016, 6, 7668.
REFERENCES
[32] W. Zhao, X. Liu, H. Lv, H. Fu, Y. Yang, Z. Huang, A. Han, Tetrahedron
Lett. 2015, 56, 4293.
[1] E. M. Nolan, S. J. Lippard, Acc. Chem. Res. 2009, 42, 193.
[33] M. S. Son, S. H. Chang, J. Envir. Sci. Inter. 2015, 24, 955.
[2] S. J. Lippard, J. M. Berg, Principles of Bioinorganic Chemistry, University
Science Books, Mill Valley, CA, USA 1994.
[34] C. Yuan, X. Liu, Y. Wu, L. Lu, M. Zhu, Spec. Act. Part A. 2015, 154, 215.
[3] B. L. Vallee, K. H. Falchuk, Physiol. Rev. 1993, 73, 79.
[4] J. M. Berg, Y. Shi, Science 1996, 271, 1081.
[5] X. Xie, T. G. Smart, Nature 1991, 349, 521.
[35] D. D. Huang, M. Zhao, X. X. Lv, Y. Y. Xing, D. Z. Chen, D. S. Guo, Ana-
lyst 2018, 143, 518.
[36] H. F. Qian, T. Tao, Y. H. Wang, G. Yin, W. Huang, Inorg. Chem. Comm.
2015, 58, 99.
[6] S. D. Vidyavati, A. Sneha, S. M. Katti, Int. J. Heal. Biomed. Res. 2016, 4,
[37] M. Hong, S. Lu, F. Lv, D. Xu, Dyes Pigment. 2016, 127, 94.
18.
[38] W. Shen, L. Wang, M. Chen, H. Lub, Quim. Nova 2016, 39, 1151.
[7] D. Shah, H. S. Sachdev, T. Gera, L. M. De‐Regil, J. P. Pena‐Rosas,
Cochrane Library 2016, 6, 1.
[39] P. Cui, X. Jiang, J. Sun, Q. Zhang, F. Gao, Methods Appl. Fluo. 2017, 5,
024009.
[8] A. I. Bush, W. H. Pettingell, G. Multhaup, M. Paradis, J.‐P. Vonsattel, J.
F. Gusella, K. Beyreuther, C. L. Maeters, R. E. Tanzi, Science 1994, 265,
1464.
[40] J. W. Jeong, B. A. Rao, Y. A. Son, Sens. Actuators B Chem. 2015, 208,
75.
[41] M. Hong, X. Lu, Y. Chen, D. Xu, Sens. Actuators B Chem. 2016, 232, 28.
[9] J. Y. Koh, S. W. Suh, B. J. Gwag, Y. Y. He, C. Y. Hsu, D. W. Choi, Sci-
ence 1996, 272, 1013.
[42] A. Dhara, A. Jana, N. Guchhait, P. Ghoshb, S. K. Kar, New J. Chem.
2014, 38, 1627.
[10] C. F. Walker, R. E. Black, Annu. Rev. Nutr. 2004, 24, 255.
[43] M. Sengar, A. K. Narula, Sens. Actuators B Chem 2017, 241, 567.
[11] L. M. Plum, L. Rink, H. Haase, Int. J. Environ. Res. Public Health 2010, 7,
[44] M. Maniyazagan, R. Mariadasse, J. Jeyakanthan, N. K. Lokanath, S.
Naveen, K. Premkumar, P. Muthuraja, P. Manisankar, T. Stalin, Sens.
Actuators B Chem. 2017, 238, 565.
1342.
[12] J. Wang, W. Lin, W. Li, Chem. Eur. J. 2012, 18, 13629.
[13] J. Li, Y. Chen, T. Chen, J. Qiang, Z. Zhang, T. Wei, W. Zhang, F. Wang,
[45] D. Li, C. Y. Li, H. R. Qi, K. Y. Tan, Y. F. Li, Sens. Actuators B Chem. 2016,
223, 705.
X. Chen, Sens. Actuators B Chem. 2018, 268, 446.
[14] X. Zhou, P. Li, Z. Shi, X. Tang, C. Chen, W. Liu, Inorg. Chem. 2012, 51,
[46] M. J. Risch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.
R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson,
9226.