Journal of the American Chemical Society
Page 8 of 10
(1) Dou, L.; Liu, Y.; Hong, Z.; Li, G.; Yang, Y. Low-Bandgap
(20) Yao, H.; Qian, D.; Zhang, H.; Qin, Y.; Xu, B.; Cui, Y.; Yu,
1
2
3
4
5
6
7
8
Near-IR Conjugated Polymers/Molecules for Organic Electronics.
Chem. Rev. 2015, 115, 12633-12665.
(2) Heeger, A. J. 25th anniversary article: Bulk heterojunction
solar cells: understanding the mechanism of operation. Adv. Mater.
2014, 26, 10-27.
(3) Inganäs, O. Organic Photovoltaics over Three Decades. Adv.
Mater. 2018, 0, 1800388.
(4) Che, X.; Li, Y.; Qu, Y.; Forrest, S. R. High fabrication yield
organic tandem photovoltaics combining vacuum- and solution-
processed subcells with 15% efficiency. Nat. Energy 2018, 3, 422-
427.
(5) Cui, Y.; Yao, H.; Yang, C.; Zhang, S.; Hou, J. Organic Solar
Cells with an Efficiency Approaching 15%, Acta Polym. Sin. 2018;
2. 223-230.
(6) Kan, B.; Feng H.; Yao, H.; Chang, M.; Wan, X.; Li, C.; Hou,
J.; Chen, Y. A chlorinated low-bandgap small-molecule acceptor
for organic solar cells with 14.1% efficiency and low energy loss.
Sci. China Chem. 2018, 61, 1307-1313.
(7) Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.;
Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H. L.; Cao, Y.; Chen, Y.
Organic and solution-processed tandem solar cells with 17.3%
efficiency. Science 2018, 361, 1094-1098.
(8) Green, MA, Hishikawa, Y, Dunlop, ED, Levi, DH,
Hohl‐Ebinger, J, Ho‐Baillie, AWY. Solar cell efficiency tables
(version 51). Progress in Photovoltaics: Research and
Applications 2018, 26, 3-12.
(9) Vandewal, K.; Albrecht, S.; Hoke, E. T.; Graham, K. R.;
Widmer, J.; Douglas, J. D.; Schubert, M.; Mateker, W. R.; Bloking,
J. T.; Burkhard, G. F.; Sellinger, A.; Fréchet, J. M. J.; Amassian,
A.; Riede, M. K.; McGehee, M. D.; Neher, D.; Salleo, A. Efficient
charge generation by relaxed charge-transfer states at organic
interfaces. Nat. Mater. 2014, 13, 63-68.
(10) Gélinas, S.; Rao, A.; Kumar, A.; Smith, S. L.; Chin, A. W.;
Clark, J.; van der Poll, T. S.; Bazan, G. C.; Friend, R. H. Ultrafast
Long-Range Charge Separation in Organic Semiconductor
Photovoltaic Diodes. Science 2014, 343, 512-516.
(11) Menke, S. M.; Ran, N. A.; Bazan, G. C.; Friend, R. H.
Understanding Energy Loss in Organic Solar Cells: Toward a New
Efficiency Regime. Joule 2018, 2, 25-35.
(12) Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.;
Manca, J. V. Relating the open-circuit voltage to interface
molecular properties of donor:acceptor bulk heterojunction solar
cells. Phys. Rev. B 2010, 81, 125204.
(13) Chen, J.; Cao, Y. Development of Novel Conjugated Donor
Polymers for High-Efficiency Bulk-Heterojunction Photovoltaic
Devices. Acc. Chem. Res. 2009, 42, 1709-1718.
(14) Beaujuge, P. M.; Fréchet, J. M. J. Molecular Design and
Ordering Effects in π-Functional Materials for Transistor and Solar
Cell Applications. J. Am. Chem. Soc. 2011, 133, 20009-20029.
(15) Henson, Z. B.; Mullen, K.; Bazan, G. C. Design strategies for
organic semiconductors beyond the molecular formula. Nat. Chem.
2012, 4, 699-704.
R.; Gao, F.; Hou, J. Critical Role of Molecular Electrostatic
Potential on Charge Generation in Organic Solar Cells. Chin. J.
Chem. 2018, 36, 491-494.
(21) Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics
2012, 6, 153-161.
(22) Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang,
C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; Li, Y. 11.4% Efficiency
non-fullerene polymer solar cells with trialkylsilyl substituted 2D-
conjugated polymer as donor. Nat. Commun. 2016, 7, 13651.
(23) Hendriks, K. H.; Wijpkema, A. S. G.; van Franeker, J. J.;
Wienk, M. M.; Janssen, R. A. J. Dichotomous Role of Exciting the
Donor or the Acceptor on Charge Generation in Organic Solar
Cells. J. Am. Chem. Soc. 2016, 138, 10026-10031.
(24) Qian, D.; Zheng, Z.; Yao, H.; Tress, W.; Hopper, T. R.; Chen,
S.; Li, S.; Liu, J.; Chen, S.; Zhang, J.; Liu, X.-K.; Gao, B.; Ouyang,
L.; Jin, Y.; Pozina, G.; Buyanova, I. A.; Chen, W. M.; Inganäs, O.;
Coropceanu, V.; Bredas, J.-L.; Yan, H.; Hou, J.; Zhang, F.;
Bakulin, A. A.; Gao, F. Design rules for minimizing voltage losses
in high-efficiency organic solar cells. Nat. Mater. 2018, 17, 703-
709.
(25) Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.;
Gasparini, N.; Rohr, J. A.; Holliday, S.; Wadsworth, A.; Lockett,
S.; Neophytou, M.; Emmott, C. J.; Nelson, J.; Brabec, C. J.;
Amassian, A.; Salleo, A.; Kirchartz, T.; Durrant, J. R.; McCulloch,
I. Reducing the efficiency-stability-cost gap of organic
photovoltaics with highly efficient and stable small molecule
acceptor ternary solar cells. Nat. Mater. 2016, 16, 363-369.
(26) Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells
based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119.
(27) Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.;
Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar
cells. Nat. Rev. Mater. 2018, 3, 18003.
(28) Zhang, J.; Tan, H. S.; Guo, X.; Facchetti, A.; Yan, H. Material
insights and challenges for non-fullerene organic solar cells based
on small molecular acceptors. Nat. Energy 2018, 3, 720-731.
(29) Liu, J.; Chen, S.; Qian, D.; Gautam, B.; Yang, G.; Zhao, J.;
Bergqvist, J.; Zhang, F.; Ma, W.; Ade, H.; Inganäs, O.; Gundogdu,
K.; Gao, F.; Yan, H. Fast charge separation in a non-fullerene
organic solar cell with a small driving force. Nat. Energy 2016, 1,
16089.
(30) Ran, N. A.; Love, J. A.; Takacs, C. J.; Sadhanala, A.; Beavers,
J. K.; Collins, S. D.; Huang, Y.; Wang, M.; Friend, R. H.; Bazan,
G. C.; Nguyen, T.-Q. Harvesting the Full Potential of Photons with
Organic Solar Cells. Adv. Mater. 2016, 28, 1482-1488.
(31) Jakowetz, A. C.; Böhm, M. L.; Zhang, J.; Sadhanala, A.;
Huettner, S.; Bakulin, A. A.; Rao, A.; Friend, R. H. What Controls
the Rate of Ultrafast Charge Transfer and Charge Separation
Efficiency in Organic Photovoltaic Blends. J. Am. Chem. Soc.
2016, 138, 11672-11679.
(32) Vandewal, K.; Benduhn, J.; Schellhammer, K. S.; Vangerven,
T.; Rückert, J. E.; Piersimoni, F.; Scholz, R.; Zeika, O.; Fan, Y.;
Barlow, S.; Neher, D.; Marder, S. R.; Manca, J.; Spoltore, D.;
Cuniberti, G.; Ortmann, F. Absorption Tails of Donor:C60 Blends
Provide Insight into Thermally Activated Charge-Transfer
Processes and Polaron Relaxation. J. Am. Chem. Soc. 2017, 139,
1699-1704.
(33) Gao, F.; Tress, W.; Wang, J.; Inganäs, O. Temperature
Dependence of Charge Carrier Generation in Organic
Photovoltaics. Phys. Rev. Lett. 2015, 114, 128701.
(34) Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.;
Hou, J. Molecular Optimization Enables over 13% Efficiency in
Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148-7151.
(35) Li, S.; Ye, L.; Zhao, W.; Yan, H.; Yang, B.; Liu, D.; Li, W.;
Ade, H.; Hou, J. A Wide Band Gap Polymer with a Deep Highest
Occupied Molecular Orbital Level Enables 14.2% Efficiency in
Polymer Solar Cells. J. Am. Chem. Soc. 2018, 140, 7159-7167.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) Armin, A.; Zhang, Y.; Burn, P. L.; Meredith, P.; Pivrikas, A.
Measuring internal quantum efficiency to demonstrate hot exciton
dissociation. Nat. Mater. 2013, 12, 593.
(17) Bassler, H.; Kohler, A. "Hot or cold": how do charge transfer
states at the donor-acceptor interface of an organic solar cell
dissociate? Phys. Chem. Chem. Phys. 2015, 17, 28451-28462.
(18) Bakulin, A. A.; Rao, A.; Pavelyev, V. G.; van Loosdrecht, P.
H. M.; Pshenichnikov, M. S.; Niedzialek, D.; Cornil, J.; Beljonne,
D.; Friend, R. H. The Role of Driving Energy and Delocalized
States for Charge Separation in Organic Semiconductors. Science
2012, 335, 1340-1344.
(19) Brédas, J.-L.; Norton, J. E.; Cornil, J.; Coropceanu, V.
Molecular Understanding of Organic Solar Cells: The Challenges.
Acc. Chem. Res. 2009, 42, 1691-1699.
ACS Paragon Plus Environment