Inorganic Chemistry
Article
(
15) Jameson, V. J.; Cocheme, H. M.; Logan, A.; Hanton, L. R.;
the Cambridge Structural Database and visualizing crystal structures.
Acta Crystallogr., Sect. B: Struct. Sci. 2002, 58 (3−1), 389−397.
(33) Corbridge, D. E. Phosphorus: Chemistry, Biochemistry and
Technology; CRC Press, 2016.
Smith, R. A.; Murphy, M. P. Synthesis of triphenylphosphonium
vitamin E derivatives as mitochondria-targeted antioxidants. Tetrahe-
dron 2015, 71 (44), 8444−8453.
(
16) Millard, M.; Gallagher, J. D.; Olenyuk, B. Z.; Neamati, N. A
(34) Winiwarter, S.; Ridderstrom, M.; Ungell, A. L.; Andersson, T.
̈
selective mitochondrial-targeted chlorambucil with remarkable
cytotoxicity in breast and pancreatic cancers. J. Med. Chem. 2013,
B.; Zamora, I. In Comprehensive Medicinal Chemistry II; Triggle, D. J.,
Ed.; Elsevier: Oxford, 2007; pp 531−554.
5
(
6 (22), 9170−9179.
(35) Ozsvari, B.; Sotgia, F.; Lisanti, M. P. Exploiting mitochondrial
targeting signal(s), TPP and bis-TPP, for eradicating cancer stem cells
(CSCs). Aging 2018, 10 (2), 229−240.
17) Finichiu, P. G.; Larsen, D. S.; Evans, C.; Larsen, L.; Bright, T.
P.; Robb, E. L.; Trnka, J.; Prime, T. A.; James, A. M.; Smith, R. A.;
Murphy, M. P. A mitochondria-targeted derivative of ascorbate:
MitoC. Free Radical Biol. Med. 2015, 89, 668−678.
(36) Ketterer, B.; Neumcke, B.; Lauger, P. Transport Mechanism of
Hydrophobic Ions through Lipid Bilayer Membranes. J. Membr. Biol.
1971, 5 (3), 225−245.
(
18) Kelso, G. F.; Porteous, C. M.; Coulter, C. V.; Hughes, G.;
Porteous, W. K.; Ledgerwood, E. C.; Smith, R. A.; Murphy, M. P.
Selective targeting of a redox-active ubiquinone to mitochondria
within cells: antioxidant and antiapoptotic properties. J. Biol. Chem.
(37) Ross, M. F.; Kelso, G. F.; Blaikie, F. H.; James, A. M.;
Cocheme, H. M.; Filipovska, A.; Da Ros, T.; Hurd, T. R.; Smith, R. A.
J.; Murphy, M. P. Lipophilic triphenylphosphonium cations as tools in
mitochondrial bioenergetics and free radical biology. Biochemistry
2
(
001, 276 (7), 4588−4596.
2
(
005, 70 (2), 222−230.
19) Kaur, A.; Brigden, K. W. L.; Cashman, T. F.; Fraser, S. T.; New,
38) El Tayar, N.; Testa, B.; Carrupt, P. A. Polar intermolecular
E. J. Mitochondrially targeted redox probe reveals the variations in
oxidative capacity of the haematopoietic cells. Org. Biomol. Chem.
interactions encoded in partition coefficients: an indirect estimation
of hydrogen-bond parameters of polyfunctional solutes. J. Phys. Chem.
2
(
015, 13 (24), 6686−6689.
1
(
992, 96 (3), 1455−1459.
20) Murphy, M. P.; Smith, R. A. Targeting antioxidants to
39) Haslop, A.; Wells, L.; Gee, A.; Plisson, C.; Long, N. One-pot
mitochondria by conjugation to lipophilic cations. Annu. Rev.
multi-tracer synthesis of novel (18)F-labeled PET imaging agents.
Pharmacol. Toxicol. 2007, 47, 629−656.
Mol. Pharmaceutics 2014, 11 (11), 3818−3822.
(
21) Ross, M. F.; Da Ros, T.; Blaikie, F. H.; Prime, T. A.; Porteous,
(40) Zhang, Z.; Jenni, S.; Zhang, C.; Merkens, H.; Lau, J.; Liu, Z.;
C. M.; Severina, I. I.; Skulachev, V. P.; Kjaergaard, H. G.; Smith, R. A.;
Murphy, M. P. Accumulation of lipophilic dications by mitochondria
and cells. Biochem. J. 2006, 400 (1), 199−208.
Perrin, D. M.; Benard, F.; Lin, K. S. Synthesis and evaluation of
18)F-trifluoroborate derivatives of triphenylphosphonium for my-
ocardial perfusion imaging. Bioorg. Med. Chem. Lett. 2016, 26 (7),
675−1679.
41) Chen, S.; Zhao, Z.; Zhang, Y.; Fang, W.; Lu, J.; Zhang, X. Effect
(
(
22) Morrison, D. E.; Aitken, J. B.; de Jonge, M. D.; Issa, F.; Harris,
1
(
H. H.; Rendina, L. M. Synthesis and Biological Evaluation of a Class
of Mitochondrially-Targeted Gadolinium(III) Agents. Chem. - Eur. J.
of methoxy group position on biological properties of (18)F-labeled
2
(
014, 20 (50), 16602−16612.
benzyl triphenylphosphonium cations. Nucl. Med. Biol. 2017, 49, 16−
23) Ucar, E.; Seven, O.; Lee, D.; Kim, G.; Yoon, J.; Akkaya, E. U.
2
(
3.
Selectivity in Photodynamic Action: Higher Activity of Mitochondria
42) While increased molecular radius from additional methyl
groups can be approximated from the molecular volume (assuming a
hypothetical sphere of the same volume), this approach is incapable of
reproducing the effect of adding individual methyl groups on a
nonspherical molecular scaffold.
(
(
24) Logan, A.; Pell, V. R.; Shaffer, K. J.; Evans, C.; Stanley, N. J.;
Robb, E. L.; Prime, T. A.; Chouchani, E. T.; Cocheme, H. M.;
Fearnley, I. M.; Vidoni, S.; James, A. M.; Porteous, C. M.; Partridge,
L.; Krieg, T.; Smith, R. A.; Murphy, M. P. Assessing the
Mitochondrial Membrane Potential in Cells and In Vivo using
Targeted Click Chemistry and Mass Spectrometry. Cell Metab. 2016,
(43) Ghanty, T. K.; Ghosh, S. K. Correlation between Hardness,
Polarizability, and Size of Atoms, Molecules, and Clusters. J. Phys.
Chem. 1993, 97 (19), 4951−4953.
(44) Horobin, R. W. In Mitochondrial Medicine: Vol. II, Manipulating
2
(
3 (2), 379−385.
Mitochondrial Function; Weissig, V., Edeas, M., Ed.; Springer: New
York, NY, 2015; pp 13−23.
25) Hu, Q.; Gao, M.; Feng, G.; Liu, B. Mitochondria-targeted
cancer therapy using a light-up probe with aggregation-induced-
emission characteristics. Angew. Chem., Int. Ed. 2014, 53 (51),
(45) Horobin, R. W.; Rashid-Doubell, F.; Pediani, J. D.; Milligan, G.
Predicting small molecule fluorescent probe localization in living cells
using QSAR modeling. 1. Overview and models for probes of
structure, properties and function in single cells. Biotech. Histochem.
1
4225−14229.
26) Chen, L. B. Mitochondrial membrane potential in living cells.
Annu. Rev. Cell Biol. 1988, 4 (1), 155−181.
27) Flewelling, R. F.; Hubbell, W. L. The membrane dipole
(
2
(
013, 88 (8), 440−460.
(
46) Horobin, R. W.; Rashid-Doubell, F. Predicting small molecule
potential in a total membrane potential model. Applications to
hydrophobic ion interactions with membranes. Biophys. J. 1986, 49
fluorescent probe localization in living cells using QSAR modeling. 2.
Specifying probe, protocol and cell factors; selecting QSAR models;
predicting entry and localization. Biotech. Histochem. 2013, 88 (8),
(
2), 541−52.
(
28) Honig, B. H.; Hubbell, W. L.; Flewelling, R. F. Electrostatic
461−476.
interactions in membranes and proteins. Annu. Rev. Biophys. Biophys.
Chem. 1986, 15, 163−193.
(
29) Hu, Z.; Sim, Y.; Kon, O. L.; Ng, W. H.; Ribeiro, A. J.; Ramos,
M. J.; Fernandes, P. A.; Ganguly, R.; Xing, B.; Garcia, F.; Yeow, E. K.
Unique Triphenylphosphonium Derivatives for Enhanced Mitochon-
drial Uptake and Photodynamic Therapy. Bioconjugate Chem. 2017,
2
(
8 (2), 590−599.
30) Li, P.; Wischert, R.; Met
Oxides with Phosphites To Access Phosphines. Angew. Chem., Int. Ed.
017, 56 (50), 15989−15992.
31) Culcasi, M.; Berchadsky, Y.; Gronchi, G.; Tordo, P. Anodic
́
ivier, P. Mild Reduction of Phosphine
2
(
behavior of crowded triarylphosphines. ESR study of triarylphospho-
niumyl radicals, Ar3P+. J. Org. Chem. 1991, 56 (11), 3537−3542.
(
32) Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae,
C. F.; McCabe, P.; Pearson, J.; Taylor, R. New software for searching
G
Inorg. Chem. XXXX, XXX, XXX−XXX