Journal of the American Chemical Society
Communication
tz
(
Figure 5b). The reaction half-life for A deamination, calculated
2012, 18, 5987−5997. (d) Dumat, B.; Bood, M.; Wranne, M. S.;
́
Lawson, C. P.; Foller Larsen, A.; Preus, S.; Streling, J.; Graden, H.;
assuming a pseudo-first order reaction, was comparable to the
one observed for adenosine, the native substrate (t1/2 = 39 and 57
s, respectively) and substantially shorter than the one obtained
for A (t = 818 s). This remarkable initial deamination rate of
A by ADA, substantiating our hypothesis, was confirmed by
HPLC analyses (Figure 5c inset, Figure S8). Taken together,
these observations highlight the improved functionality of the
isothiazolopyrimidine over the thienopyrimidine core.
In summary, we introduce a second-generation family of
emissive nucleoside analogues, based on an isothiazolopyrimi-
dine scaffold. This atomic mutation results in higher
isomorphicity and significantly improved functionality when
compared to the thienopyrimidine-based RNA alphabet. The
presence of the isothiazole core with its nitrogen in the
equivalent position to N7 of the native purines, restores the
Hoogsteen face, as well as the basicity and native H bonding
ability of these surrogates, as illustrated structurally (for G) and
biochemically (for A deamination by ADA). These observa-
tions, indicating that the newly introduced purine surrogates
display improved structural and functional characteristics, are of
significance since very few emissive, isomorphic, and non-
perturbing purine analogues have so far been made and
biophysically exploited.
Wellner, E.; Grøtli, M.; Wilhelmsson, L. M. Chem. - Eur. J. 2015, 21,
039−4048. (e) Greco, N. J.; Tor, Y. J. Am. Chem. Soc. 2005, 127,
10784−10785.
3) Shin, D.; Sinkeldam, R. W.; Tor, Y. J. Am. Chem. Soc. 2011, 133,
4912−14915.
4) (a) Liu, W.; Shin, D.; Tor, Y.; Cooperman, B. S. ACS Chem. Biol.
4
th
1/2
(
1
(
tz
2013, 8, 2017−2023. (b) Sinkeldam, R. W.; McCoy, L. S.; Shin, D.; Tor,
Y. Angew. Chem., Int. Ed. 2013, 52, 14026−14030. (c) McCoy, L. S.;
Shin, D.; Tor, Y. J. Am. Chem. Soc. 2014, 136, 15176−15184. (d) Otomo,
H.; Park, S.; Yamamoto, S.; Sugiyama, H. RSC Adv. 2014, 4, 31341−
3
1344. (e) Park, S.; Otomo, H.; Zheng, L.; Sugiyama, H. Chem.
Commun. 2014, 50, 1573−1575. (f) Sholokh, M.; Sharma, R.; Shin, D.;
Das, R.; Zaporozhets, O. A.; Tor, Y.; Mely, Y. J. Am. Chem. Soc. 2015,
1
(
37, 3185−3188.
5) Mizrahi, R. A.; Shin, D.; Sinkeldam, R. W.; Phelps, K. J.; Fin, A.;
Tantillo, D. J.; Tor, Y.; Beal, P. A. Angew. Chem., Int. Ed. 2015, 54, 8713−
8
716.
tz
tz
(7) (a) Cote, G. L.; Flitsch, S.; Ito, Y.; Kondo, H.; Nishimura, S.; Yu, B.;
́
Fraser-Reid, B. O.; Tatsuta, K.; Thiem, J. Glycoscience: Chemistry and
Chemical Biology. 2 ed.; Springer-Verlag: Berlin Heidelberg, 2008;.
(
b) Iddon, B. Heterocycles 1995, 41, 533−593. (c) Stambasky, J.; Hocek,
M.; Kocovsky, P. Chem. Rev. 2009, 109, 6729−6764.
8) Attempts to glycosylate the nucleobase using palladium coupling
(
chemistry, grignard formation, alkyllithium chemistry, and standard
Vorgbruggen glycosylation conditions were all unsucessful.
(9) Wamhoff, H.; Berressem, R.; Nieger, M. J. Org. Chem. 1993, 58,
ASSOCIATED CONTENT
Supporting Information
■
*
S
(
(
11) Bessieres, B.; Morin, C. Synlett. 2000, 1691−1693.
X-ray crystallographic data for G (CIF)
X-ray crystallographic data for C (CIF)
X-ray crystallographic data for U (CIF)
12) Gewald, K.; Bellmann, P. Liebigs Ann. Chem. 1979, 1979, 1534−
1
546.
tz
(
13) van Rijssel, E. R.; van Delft, P.; Lodder, G.; Overkleeft, H. S.; van
der Marel, G. A.; Filippov, D. V.; Codee, J. D. C. Angew. Chem., Int. Ed.
2014, 53, 10381−10385.
14) Lecoutey, C.; Fossey, C.; Rault, S.; Fabis, F. Eur. J. Org. Chem.
011, 2011, 2785−2788.
15) Fuji, K.; Ichikawa, K.; Node, M.; Fujita, E. J. Org. Chem. 1979, 44,
tz
́
tz
tz
(
2
(
X-ray crystallographic data for A (CIF)
AUTHOR INFORMATION
Notes
1661−1664.
(16) Seley, K. L.; Zhang, L.; Hagos, A.; Quirk, S. J. Org. Chem. 2002, 67,
3365−3373.
(17) (a) Additionally, an overlay of the purine analogues and natural
nucleosides may be found on Figure S1. (b) Marsh, R. E.; Bugg, C. E.;
Thewalt, U. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
The authors declare no competing financial interest.
1
970, B26, 1089−1101.
ACKNOWLEDGMENTS
We thank the National Institutes of Health for generous support
GM 069773), the Chemistry and Biochemistry MS Facility, and
the UCSD X-ray crystallography Facility.
■
(18) (a) Simpson, R. B. J. Am. Chem. Soc. 1964, 86, 2059−2065.
(b) Luyten, I.; Pankiewicz, K. W.; Watanabe, K. A.; Chattopadhyaya, J. J.
Org. Chem. 1998, 63, 1033−1040.
(
(
19) (a) Christensen, J. J.; Rytting, J. H.; Izatt, R. M. Biochemistry 1970,
9
, 4907−4913. (b) Kapinos, L. E.; Operschall, B. P.; Larsen, E.; Sigel, H.
Chem. - Eur. J. 2011, 17, 8156−8164.
20) (a) Bundari, S. The Merck Index, 12th ed.; Merck and Co., Inc.:
Whitehouse Station, NJ, 1996;. (b) Sigel, H.; Massoud, S. S.; Corfu, N.
REFERENCES
■
(
(
1) (a) Sinkeldam, R. W.; Greco, N. J.; Tor, Y. Chem. Rev. 2010, 110,
̀
2
579−2619. (b) Wilhelmsson, M. Q. Rev. Biophys. 2010, 43, 159−183.
A. J. Am. Chem. Soc. 1994, 116, 2958−2971. (c) Thapa, B.; Schlegel, H.
B. J. Phys. Chem. A 2015, 119, 5134−5144. (d) Kampf, G.; Kapinos, L.
E.; Griesser, R.; Lippert, B.; Sigel, H. J. Chem. Soc., Perkin Trans. 2 2002,
(
(
4
c) Hawkins, M. E. Cell Biochem. Biophys. 2001, 34, 257−281.
d) Wilson, J. N.; Kool, E. T. Org. Biomol. Chem. 2006, 4, 4265−
274. (e) Okamoto, A.; Saito, Y.; Saito, I. J. Photochem. Photobiol., C
1
(
320−1327.
2
005, 6, 108−122. (f) Dodd, D. W.; Hudson, R. H. E. Mini-Rev. Org.
21) (a) Kinoshita, T.; Nishio, N.; Nakanishi, I.; Sato, A.; Fujii, T. Acta
Chem. 2009, 6, 378−391. (g) Kimoto, M.; Cox, R. S., III; Hirao, I. Expert
Rev. Mol. Diagn. 2011, 11, 321−331. (h) Rist, M. J.; Marino, J. P. Curr.
Org. Chem. 2002, 6, 775−793. (i) Wierzchowski, J.; Antosiewicz, J. M.;
Shugar, D. Mol. BioSyst. 2014, 10, 2756−2774.
Crystallogr., Sect. D: Biol. Crystallogr. 2003, 59, 299−303. (b) Wilson, D.
K.; Rudolph, F. B.; Quiocho, F. A. Science 1991, 252, 1278−1284.
(c) Kinoshita, T.; Nakanishi, I.; Terasaka, T.; Kuno, M.; Seki, N.;
Warizaya, M.; Matsumura, H.; Inoue, T.; Takano, K.; Adachi, H.; Mori,
(
(
2) (a) Gaied, N. B.; Glasser, N.; Ramalanjaona, N.; Beltz, H.; Wolff,
P.; Marquet, R.; Burger, A.; Mely, Y. Nucleic Acids Res. 2005, 33, 1031−
039. (b) Nadler, A.; Strohmeier, J.; Diederichsen, U. Angew. Chem., Int.
Ed. 2011, 50, 5392−5396. (c) Dierckx, A.; Miannay, F.-A.; Gaied, N. B.;
Preus, S.; Bjorck, M.; Brown, T.; Wilhelmsson, L. M. Chem. - Eur. J.
1
̈
1
4605
J. Am. Chem. Soc. 2015, 137, 14602−14605