608
Z. Liu et al. / Inorganic Chemistry Communications 13 (2010) 606–608
and ethylene diamine is developed. Compared with other metal ions,
the chemosensor QSB exhibits high selectivity and sensitivity for Zn
(II) in acetonitrile solution, moreover, the single crystal between the
ligand and Zn(II) is also obtained, so the coordinative geometry is
demonstrated clearly according to the single crystal analysis. The
remarkable photophysical properties of the chemosensor will be
helpful for the development of fluorescent sensor based on quinoline
derivates.
Acknowledgements
We are grateful for the financial support from the National Science
Foundation of China (20975046) and Gansu NSF (0710RJZA012).
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.inoche.2010.02.014.
Fig. 5. Relative fluorescence intensity at the metal ion to QSB. Excitation wavelength
was 305 nm, emission wavelength was 423 nm. I0 was the fluorescence intensity of QSB
without metal ions, I was the fluorescence intensity of QSB after addition of metal ions.
References
[1] E.L. Que, D.W. Domaille, C.J. Chang, Chem. Rev. 108 (2008) 1517.
[2] R. Uauy, M. Olivares, M. Gonzalez, Am. J. Clin. Nutr. 67 (1998) 952.
[3] E.M. Nolan, S.J. Lippard, Inorg. Chem. 43 (2004) 8310.
[4] C.J. Chang, E.M. Nolan, J. Jaworski, K.I. Okamato, Y. Hayashi, M. Shang, S.J. Lippard,
Inorg. Chem. 43 (2004) 6774.
[5] R. Parkesh, T.C. Lee, T. Gunnlaugsson, Org. Biomol. Chem. 5 (2007) 310.
[6] H.Y. Gong, Q.Y. Zheng, X.H. Zhang, D.X. Wang, M.X. Wang, Org. Lett. 8 (2006) 4895.
[7] K. Komatsu, Y. Urano, H. Kojima, T. Nagano, J. Am. Chem. Soc. 129 (2007) 13447.
[8] E. Kimura, S. Aoki, E. Kikuta, T. Koike, Proc. Natl. Acad. Sci. USA 100 (2003) 3731.
[9] S.C. Burdette, S.J. Lippard, Proc. Natl. Acad. Sci. USA 100 (2003) 3605.
[10] J.M. Berg, Y. Shi, Science 271 (1996) 1081.
[11] A. Voegelin, S. Poster, A.C. Scheinost, M.A. Marcus, R. Kretzsch-mar, Environ. Sci.
Technol. 39 (2005) 6616.
[12] F.A. Cotton, G. Wilkinson, Advan. Inorg. Chem. 16 (1988) 957.
[13] A.L. Bush, Trends Neurosci. 26 (2003) 207.
[14] K.M. Hendrickson, J.P. Geue, O. Wyness, S.F. Lincoln, A.D. Ward, J. Am. Chem. Soc.
125 (2003) 3889.
[15] T. Hirano, K. Kikuchi, Y. Urano, T. Higuchi, T. Nagano, Angew. Chem., Int.Ed. 39
(2000) 1052.
[16] J.S. Marvin, H.W. Hellinga, Proc. Natl. Acad. Sci. USA 98 (2001) 4955.
[17] M. Royzen, A. Durandin, V.G. Young Jr., N.E. Geacintov, J.W. Canary, J. Am. Chem.
Soc. 128 (2006) 3851.
[18] J.N. Ngwendson, A. Banerjee, Tetrahedron Lett. 48 (2007) 7316.
[19] H.Y. Li, S. G, Z. X, Inorg. Chem. Commun. 12 (2009) 300.
[20] P. Roy, K. Dhara, M. Manassero, P. Banerjee, Inorg. Chem. Acta. 362 (2009) 2927.
[21] H.L. Chen, Y.B. Wu, Y.F. Cheng, H. Yang, F.Y. Li, P. Yang, C.H. Hang, Inorg. Chem.
Commun. 10 (2007) 1413.
Fig. 6. Fluorescence intensity emission spectrum of QSB in presence of different
concentration Zn(II) (0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 22.5, 25.0, 27.5 and
30.0 μM) in acetonitrile solution.
[22] M.K. Singh, A. Chandra, B. Singh, R.M. Singh, Tetrahedron Lett. 48 (2007) 5987.
[23] R.K. Kalita, B. Baruah, P.J. Bhuyan, Tetrahedron Lett. 47 (2006) 7779.
[24] An ethanol solution (10 mL) containing ethylene diamine (0.12 g, 2.0 mmol) was
added to another ethanol solution (10 mL) containing 2-oxo-quinoline-3-carbalde-
hyde (0.692 g, 4.0 mmol). The mixture was refluxed for 6h with stirring and a white
precipitate separated out. The precipitation was filtrated under decompression and
washed with ethanol. Recrystallization from DMF/H2O (V:V=1:1) gave the ligand,
which was dried under vacuum. Yield, 70%. m.p: 317–319 °C. 1H-NMR (DMSO–d6
300 MHz): δ 11.992 (2H, s, –N1–H), δ 8.562 (2H, s, –CH=N), δ 8. 441 (2H, s, –C4,4′–H),
δ 7.9797–7.838 (2H, m, –C8,8′–H), δ 7.490–7.567 (2H, m, –C7,7′–H), δ 7.279–7.317
(2H, m, –C5,5′–H), δ 7.152–7.224 (2H, m, –C6,6′–H), δ 3.915 (4H, s, –C10,10′–H).
[25] X-ray crystal data of Zn–QSB. Formula, C22 H22 N6 O10 Zn1; Crystal system, C2/c;
Space group, Monoclinic; a(Å), 27.000(2), b(Å), 25.6160(17), c(Å), 7.0703(5);
α(°), 90.00, β(°), 91.009(2), γ(°), 90.00; Reflections collected, 3851/5039; Abs
coeff (mm−1), 0.0998; Final R indices, R1=0.0343, wR2=0.0823.
[26] J. Dessingou, R. Joseph, C.P. Rao, Tetrahedron Lett. 46 (2005) 7967.
the presence of Zn(II). As shown in Fig. 6, the fluorescence intensity of
423 nm increased significantly and reached saturation with the
addition of Zn(II). A plot of relative fluorescence intensity (I/I0)
versus [Zn]/[QSB] explicitly (Fig. 6 inset) illustrated that there was a
more than 20 fold increase when compared to QSB. Simultaneously,
the formation of 1:1 metal complex between Zn(II) and QSB was also
illustrated by the inset [26]. This coordinative mode from fluorescence
titration was corresponding to the structure from X-ray diffraction.
In conclusion, a novel fluorescent chemosensor (QSB) based on a
bis Schiff-base ligand derived from 2-oxo-quinoline-3-carbaldehyde