6 T. Koerts, R. A. van Santen, J. R. H. Ross, F. Solymosi,
M. M. Bhasin, S. I. Woo, R. Vanhardeveld, D. Wang,
A. Machocki, K. Foger, J. G. Goodwin and A. Sarkany, Stud.
Surf. Sci. Catal., 1993, 75, 1065–1078.
7 L. Schlapbach and A. Zuttel, Nature, 2001, 414, 353–358.
8 O. Maury, L. Lefort, V. Vidal, J. Thivolle-Cazat and J. M. Basset,
Angew. Chem., Int. Ed., 1999, 38, 1952–1955.
9 J.-M. Basset, S. Chakka, M. Taoufik and J. Thivolle-Cazat, BP Oil
International Limited, UK, WO 2008152371, 2008.
10 A. Virnovskaia, E. Rytter and U. Olsbye, Ind. Eng. Chem. Res.,
2008, 47, 7167–7177.
11 L. Borko and L. Guczi, Top. Catal., 2006, 39, 34–43.
12 P. Pareja, M. Mercy, J. C. Gachon, A. Amariglio and
H. Amariglio, Ind. Eng. Chem. Res., 1999, 38, 1163–1165.
13 T. Kurosaka, H. Matsuhashi and K. Arata, J. Catal., 1998, 179,
28–35.
14 T. V. Choudhary, E. Aksoylu and D. W. Goodman, Catal. Rev.
Sci. Eng., 2003, 45, 151–203.
15 X. H. Gu, J. Zhang, J. H. Dong and T. M. Nenoff, Catal. Lett.,
2005, 102, 9–13.
Fig. 3 Catalytic performances at 350 1C, 50 bar of W-H@g-Al2O3
for the NOCM: (a) equipped with a Pd–Ag membrane and (b) classical
fixed-bed reactor.
16 T. Koerts, M. Deelen and R. A. van Santen, J. Catal., 1992, 138,
101–114.
17 D. Soulivong, S. Norsic, M. Taoufik, C. Coperet, J. Thivolle-
´
Cazat, S. Chakka and J. M. Basset, J. Am. Chem. Soc., 2008, 130,
5044–5045.
´
18 E. Le Roux, M. Taoufik, C. Coperet, A. de Mallmann, J. Thivolle-
Cazat, J. M. Basset, B. M. Maunders and G. J. Sunley, Angew.
Chem., Int. Ed., 2005, 44, 6755–6758.
´
19 E. Le Roux, M. Taoufik, A. Baudouin, C. Coperet, J. Thivolle-
Cazat, J. M. Basset, B. M. Maunders and G. J. Sunley, Adv. Synth.
Catal., 2007, 349, 231–237.
20 M. Taoufik, E. Le Roux, J. Thivolle-Cazat and J. M. Basset,
Angew. Chem., Int. Ed., 2007, 46, 7202–7205.
21 N. Merle, F. Stoffelbach, M. Taoufik, E. Le Roux, J. Thivolle-Cazat
and J. M. Basset, Chem. Commun., 2009, 2523–2525.
22 M. Taoufik, E. Schwab, M. Schultz, D. Vanoppen, M. Walter,
J. Thivolle-Cazat and J. M. Basset, Chem. Commun., 2004, 1434–1435.
´
23 D. Soulivong, C. Coperet, J. Thivolle-Cazat, J. M. Basset,
B. M. Maunders, R. B. A. Pardy and G. J. Sunley, Angew. Chem.,
Int. Ed., 2004, 43, 5366–5369.
24 L. S. Wang, K. Murata, A. Sayari, B. Grandjean and M. Inaba,
Chem. Commun., 2001, 1952–1953.
25 V. Hollein, M. Thornton, P. Quicker and R. Dittmeyer, Catal.
Today, 2001, 67, 33–42.
26 G. Marigliano, G. Barbieri and E. Drioli, Chem. Eng. Process.,
2003, 42, 231–236.
27 W. H. Lin and H. F. Chang, Catal. Today, 2004, 97, 181–188.
28 P. H. Chiang, D. Eng and M. Stoukides, J. Electrochem. Soc.,
1991, 138, L11–L12.
29 P. H. Chiang, D. Eng, H. Alqahtany and M. Stoukides, Solid State
Ionics, 1992, 53, 135–141.
Constant removal of hydrogen accelerates the catalyst
activation time to about 500 min (Fig. 3a) in comparison
with the standard case of 5000 min (Fig. 1b). Then, the
conversion slowly decreases. After 2500 min, the activity of
W-H@g-Al2O3 is 20 times higher in the membrane reactor
(TON = 40) than in the classical reactor (TON = 2, Fig. S8,
ESI).w Evaluation of the quantity of H2 at both sides of the
membrane indicates that 93% of it had been removed. There is
a notable difference in the initiation step between the reaction
performed in a classical fixed-bed reactor and the one
equipped with a membrane. This can be explained by an
equilibrium situation described in Scheme S1 (ESI).w
Activation of methane in the first step involves elimination
of hydrogen. Hence, removal of hydrogen favours the C–H
activation of methane on W-H@g-Al2O3.
In conclusion, alternative and stable catalysts based on
W–H supported onto SiO2–Al2O3 or g-Al2O3 for the NOCM
to ethane and hydrogen has been presented. It appears that
CH4 activation and conversion are further improved by the
presence of a H2 permeable membrane that constantly
removes H2 and thereby driving the NOCM reaction forward.
The authors thank BP for funding this work, REB Research
& Consulting for providing the fixed-bed reactor equipped with
a Pd–Ag membrane and helpful discussions.
30 R. R. Schrock, K. Y. Shih, D. A. Dobbs and W. M. Davis, J. Am.
Chem. Soc., 1995, 117, 6609–6610.
31 R. R. Schrock, S. W. Seidel, N. C. MoschZanetti, D. A. Dobbs,
K. Y. Shih and W. M. Davis, Organometallics, 1997, 16, 5195–5208.
32 S. Soignier, M. Taoufik, E. Le Roux, G. Saggio, C. Dablemont,
A. Baudouin, F. Lefebvre, A. de Mallmann, J. Thivolle-Cazat,
J. M. Basset, G. Sunley and B. M. Maunders, Organometallics,
2006, 25, 1569–1577.
Notes and references
1 J. Johnson, Chem. Eng. News, 2007, 85, 10.
2 R. G. Bergman, Nature, 2007, 446, 391–393.
3 C. D. Elvidge, E. H. Erwin, K. E. Baugh, B. T. Tuttle,
A. T. Howard, D. W. Pack and C. Milesi, Oil Gas J., 2007, 105, 50.
4 M. Belgued, P. Pareja, A. Amariglio and H. Amariglio, Nature,
1991, 352, 789–790.
33 J. M. Basset, C. Coperet, D. Soulivong, M. Taoufik and
´
J. Thivolle-Cazat, Acc. Chem. Res., 2010, 43, 323–334.
34 G. Saracco, H. Neomagus, G. F. Versteeg and W. P. M. van
Swaaij, Chem. Eng. Sci., 1999, 54, 1997–2017.
5 T. Koerts and R. A. van Santen, J. Chem. Soc., Chem. Commun.,
1991, 1281–1283.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 3985–3987 | 3987