ACTIVITY OF ZEOLITES IN DIMETHYL SULFIDE SYNTHESIS
583
Table 4. Effects of the residence time and initial DMDS conꢀ
centration on the DMDS conversion and product selectivities
for the 2.5%CoHZSMꢀ5 (Si/Al = 17) catalyst at 250°C
route: DMDS decomposes to MM, which then conꢀ
denses into DMS, releasing hydrogen sulfide. Similar
trends were observed earlier for DMDS conversion
into DMS under the action of other catalysts [3]. As
the reaction temperature is raised, the DMS formaꢀ
tion rate increases and the DMS selectivity falls
(Fig. 2).
S
, %
[DMDS]0,
vol %
τ
, s
Х, %
DMS MM Н2S
CS2
0.18
0.15
0.16
0.17
0.10
0.13
0.16
0.21
0.36
1.2
1.6
1.9
3.1
1.6
1.7
1.6
1.8
1.5
65
68
72
68
48
61
70
84
98
42
44
47
45
37
40
44
46
50
25
27
26
24
41
35
29
20
16
16
14
16
14
11
12
14
17
19
14
14
11
16
10
11
12
15
14
Thus, the decationized and cobaltꢀcontaining zeoꢀ
lites are active catalysts for DMDS conversion into
DMS. The most efficient catalyst is 2.5%CoHZSMꢀ5
(Si/Al = 17).
REFERENCES
1. Mashkina, A.V., Kataliz reaktsii organicheskikh
soedinenii sery (Catalysis of Reactions of Organosulfur
Compounds), Novosibirsk: Sib. Otd. Ross. Akad.
Nauk, 2005.
ates fine CoS particles containing coordinatively
unsaturated Co cations, which are acceptor sites.
The effect of the reaction conditions on the outꢀ
comes of the process were studied on the
2.5%CoHZSMꢀ5 catalyst. At a constant temperature
and residence time, variation of the initial DMDS
concentration has no effect on the DMDS conversion
(Table 4). The product selectivities of the reaction are
also independent of the initial DMDS concentration.
As the DMDS conversion, which depends on the resꢀ
idence time, is increased, the MM selectivity
decreases and the DMS selectivity increases to reach
its thermodynamic limit at complete disulfide converꢀ
sion. This suggests that DMS forms via a consecutive
2. Mazgarov, A.M. and Vil’danov, A.F., Neftekhimiya
,
1999, vol. 39, no. 5, p. 371 [Pet. Chem. (Engl. Transl.),
vol. 39, no. 5, p. 336].
3. Mashkina, A.V. and Khairulina, L.N., Kinet. Katal.
,
2009, vol. 50, no. 3, p. 434 [Kinet. Catal. (Engl. Transl.),
vol. 50, no. 3, p. 414].
4. Paukshtis, E.A., Infrakrasnaya spektroskopiya v geteroꢀ
gennom kislotnoꢀosnovnom katalize (Infrared Spectrosꢀ
copy in Heterogeneous Acid–Base Catalysis), Novosiꢀ
birsk: Nauka, 1992.
5. Krivoruchko, O.P., Anufrienko, V.F., Paukshtis, E.A.,
Larina, T.V., Burgina, E.B., Yashnik, S.A., Ismagilov,
Z.R., and Parmon, V.N., Dokl. Akad. Nauk, 2001,
vol. 398, no. 3, p. 356 [Dokl. Phys. Chem. (Engl.
Transl.), vol. 398, no. 3, p. 226].
S, %
50
6. Karge, H.G., Ziolek, M., and Laniecke, M., Zeolites
,
1987, vol. 7, no. 3, p. 197.
3
7. Masthihin, V.M., Mudrakovsky, I.L., Nosov, A.V., and
Mashkina, A.V., J. Chem. Soc., Faraday Trans. 1, 1989,
vol. 85, no. 9, p. 2819.
2
30
30
1
8. Mashkina, A.V., Desyatov, I.V., and Mashkin, V.Yu.,
Kinet. Katal., 1996, vol. 37, no. 1, p. 104 [Kinet. Catal.
(Engl. Transl.), vol. 37, no. 1, p. 98].
9. Organic Chemistry of Sulfur, Oae, S., Ed., New York:
10
Plenum, 1977.
10. Krivoruchko, O.P., Gavrilov, V.Yu., Molina, I.Yu., and
200
240
280
320
T, °C
Larina, T.V., Kinet. Katal., 2008, vol. 49, no. 2, p. 300
[
Kinet. Catal. (Engl. Transl.), vol. 49, no. 2, p. 285].
Fig. 2.
(
1
X
) DMS formation rate (
= (2) 70 and (3) 98% as a function of temperaꢀ
P
) and (
2
,
3
) DMS selecꢀ
S
tivity at
11. Kazansky, V.B., Serykh, A.J., and Bell, A.T., Catal.
Lett., 2002, vol. 83, nos. 3–4, p. 191.
ture for the 2.5%CoHZSMꢀ5 (Si/Al = 17) catalyst.
[DMDS] = 3.2 vol %.
KINETICS AND CATALYSIS Vol. 51
No. 4
2010