Organic Letters
Letter
(7) (a) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew.
Chem. 2007, 119, 3876; Angew. Chem., Int. Ed. 2007, 46, 3802.
(b) Blair, V. L.; Blakemore, D. C.; Hay, D.; Pryde, D. C.; Hevia, E.
Tetrahedron Lett. 2011, 52, 4590. (c) Armstrong, D. R.; Crosbie, E.;
Hevia, E.; Robertson, S. D.; Mulvey, R. E.M; Ramsay, D. L. Chem. Sci.
2014, 5, 3031.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(8) Bresser, T.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 1914.
(9) For a general introduction, see: (a) Flash Chemistry: Fast Organic
Synthesis in Microsystems; Yoshida, J., Ed.; Wiley: Chichester, 2008.
(b) Brzozowski, M.; O’Brien, M.; Ley, S. V.; Polyzos, A. Acc. Chem.
Res. 2015, 48, 349. For recent developments, see: (c) Chen, M.;
Ichikawa, S.; Buchwald, S. L. Angew. Chem., Int. Ed. 2015, 54, 263;
Angew. Chem. 2015, 127, 265. (d) Zhang, Y.; Born, S. C.; Jensen, K. F.
Org. Process Res. Dev. 2014, 18, 1476. (e) Brodmann, T.; Koos, P.;
Metzger, A.; Knochel, P.; Ley, S. V. Org. Process Res. Dev. 2012, 16,
1102. (f) Ley, S. V.; Fitzpatrick, D. E.; Ingham, R. J.; Myers, R. M.
Angew. Chem., Int. Ed. 2015, 54, 3449; Angew. Chem. 2015, 127, 3514.
(g) Painter, T. O.; Thornton, P. D.; Orestano, M.; Santini, C.; Organ,
M. G. Chem. - Eur. J. 2011, 17, 9595. (h) Somerville, K.; Tilley, M.; Li,
G.; Mallik, D.; Organ, M. G. Org. Process Res. Dev. 2014, 18, 1315.
(i) Webb, D.; Jamison, T. F. Org. Lett. 2012, 14, 568. (j) He, Z.;
Jamison, T. F. Angew. Chem., Int. Ed. 2014, 53, 3353. (k) Nagaki, A.;
Kim, H.; Yoshida, J.-i. Angew. Chem., Int. Ed. 2008, 47, 7833. (l) Kim,
H.; Nagaki, A.; Yoshida, J.-i. Nat. Commun. 2011, 2, 264. (m) Nagaki,
A.; Imai, K.; Ishiuchi, S.; Yoshida, J.-i. Angew. Chem., Int. Ed. 2015, 54,
1914. (n) Ushakov, D. B.; Gilmore, K.; Kopetzki, D.; McQuade, D. T.;
Seeberger, P. H. Angew. Chem., Int. Ed. 2014, 53, 557; Angew. Chem.
2014, 126, 568.
(10) (a) Petersen, T. P.; Becker, M. R.; Knochel, P. Angew. Chem.
2014, 126, 8067; Angew. Chem., Int. Ed. 2014, 53, 7933. (b) Becker, M.
R.; Ganiek, M. A.; Knochel, P. Chem. Sci. 2015, 6, 6649. (c) Becker, M.
R.; Knochel, P. Angew. Chem. 2015, 127, 12681; Angew. Chem., Int. Ed.
2015, 54, 12501.
(11) (a) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem.
2006, 118, 3024; Angew. Chem., Int. Ed. 2006, 45, 2958. (b) Mosrin,
M.; Knochel, P. Org. Lett. 2008, 10, 2497. (c) Nafe, J.; Knochel, P.
Synthesis 2015, 48, 103.
(12) Equipment from Vapourtec Ltd. (E-Series; http://www.
(13) Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem.
1988, 53, 2390.
(14) Smirnow, D.; Hopkins, P. Synth. Commun. 1986, 16, 1187.
(15) (a) Negishi, E.-i.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc.
1980, 102, 3298. (b) Negishi, E.-i; Kobayashi, M. J. Org. Chem. 1980,
45, 5223. (c) Negishi, E.-i. Acc. Chem. Res. 1982, 15, 340. For P(2-
furyl)3, see: (d) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113,
9585.
(16) For previous flow cross-coupling reactions, see: (a) Noel, T.;
Kuhn, S.; Musacchio, A. J.; Jensen, K. F.; Buchwald, S. L. Angew.
Chem., Int. Ed. 2011, 50, 5943.
Detailed experimental procedures and characterization
data for new compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the DFG (SFB 749 and DIP) for financial support.
We thank Vapourtec Ltd. for helpful technical support and
Rockwood Lithium GmbH (Frankfurt), BASF AG (Ludwig-
shafen) for the generous gift of chemicals. M.K. would like to
thank the Foundation of the German Economy for financial
support.
REFERENCES
■
(1) (a) Schmidt, R. R.; Betz, R. Synthesis 1982, 1982, 748.
(b) Sengupta, S.; Snieckus, V. J. Org. Chem. 1990, 55, 5680.
(c) Reed, M. A.; Chang, M. T.; Snieckus, V. Org. Lett. 2004, 6,
2297. For alternative preparations of alkenyl organometals, see:
́
(d) Dagousset, G.; Franco̧ is, C.; Leοn, T.; Blanc, R.; Sansiaume-
Dagousset, E.; Knochel, P. Synthesis 2014, 46, 3133.
(2) (a) Schmidt, R. R. In Natural Product Chemistry; Rahman, A., Ed.;
Springer: 1986, Berlin. (b) Name Reactions in Heterocyclic Chemistry;
Li, J. J., Corey, E. J., Eds.; Wiley: Hoboken, NJ, 2005. (c) Roque, D. R.;
Neill, J. L.; Antoon, J. W.; Stevens, E. P. Synthesis 2005, 2497. (f) Kao,
T.; Syu, S.; Jhang, Y.; Lin, W. Org. Lett. 2010, 12, 3066.
(g) Bonnamour, J.; Bolm, C. Org. Lett. 2011, 13, 2012. (h) Patel, B.
H.; Mason, A. M.; Barrett, A. G. M. Org. Lett. 2011, 13, 5156.
(3) (a) Zografos, A. L.; Georgiadis, D. Synthesis 2006, 2006, 3157.
(b) Vieweg, L.; Vieweg, L.; Reichau, S.; Schobert, R.; Leadlay, P. F.;
Sussmuth, R. D. Nat. Prod. Rep. 2014, 31, 1554.
̈
(4) (a) Schmidt, R. R.; Talbiersky, J.; Russegger, P. Tetrahedron Lett.
1979, 20, 4273. (b) Feit, B. A.; Melamed, U.; Schmidt, R. R.; Speer, H.
Tetrahedron 1981, 37, 2143. (c) Harrowven, D. C.; Poon, H. S.
Tetrahedron Lett. 1994, 35, 9101. (d) Harrowven, D. C.; Poon, H. S.
Tetrahedron 1996, 52, 1389.
(5) (a) Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837. (b) Mosrin,
M.; Monzon, G.; Bresser, T.; Knochel, P. Chem. Commun. 2009, 5615.
́
(c) Bresser, T.; Mosrin, M.; Monzon, G.; Knochel, P. J. Org. Chem.
2010, 75, 4686. (d) Crestey, F.; Knochel, P. Synthesis 2010, 2010,
1097. (e) Monzon, G.; Knochel, P. Synlett 2010, 2010, 304.
(g) Bresser, T.; Monzon, G.; Mosrin, M.; Knochel, P. Org. Process
Res. Dev. 2010, 14, 1299. (h) Duez, S.; Steib, A. K.; Manolikakes, S.
M.; Knochel, P. Angew. Chem., Int. Ed. 2011, 50, 7686. (i) Klier, L.;
Bresser, T.; Nigst, T. A.; Karaghiosoff, K.; Knochel, P. J. Am. Chem.
Soc. 2012, 134, 13584. (j) Unsinn, A.; Ford, M. J.; Knochel, P. Org.
Lett. 2013, 15, 1128. (k) Crestey, F.; Zimdars, S.; Knochel, P. Synthesis
2013, 45, 3029. (l) Barl, N. M.; Malakhov, V.; Mathes, C.;
Lustenberger, P.; Knochel, P. Synthesis 2015, 47, 692.
(6) (a) Wunderlich, S. H.; Knochel, P. Angew. Chem. 2007, 119,
7829; Angew. Chem., Int. Ed. 2007, 46, 7685. (b) Wunderlich, S. H.;
Knochel, P. Chem. Commun. 2008, 47, 6387. (c) Wunderlich, S. H.;
Knochel, P. Org. Lett. 2008, 10, 4705. (d) Mosrin, M.; Knochel, P.
Chem. - Eur. J. 2009, 15, 1468. (e) Kienle, M.; Dunst, C.; Knochel, P.
Org. Lett. 2009, 11, 5158. (f) Dunst, C.; Kienle, M.; Knochel, P.
Synthesis 2010, 2010, 2313.
(17) A Pd-catalyst seems to cause isomerization of the intermediate
zinc reagents (compare Table 1, entries 1−4).
(18) A mechanical back pressure regulator was used, which allows in
principle unlimited scalability (unlike sealed tube batch reactors).
Compare: (a) Noel, T.; Maimone, T. J.; Buchwald, S. L. Angew. Chem.,
Int. Ed. 2011, 50, 8900. For a reactor design without mechanical
constrictions: (b) Sauks, J. M.; Mallik, D.; Lawryshyn, Y.; Bender, T.;
Organ, M. Org. Process Res. Dev. 2014, 18, 1310.
(19) For large-scale (micro)flow reactions, see also: (a) Ullah, F.;
Samarakoon, T.; Rolfe, A.; Kurtz, R. D.; Hanson, P. R.; Organ, M. G.
Chem. - Eur. J. 2010, 16, 10959. (b) Browne, D. L.; Baumann, M.;
Harji, B. H.; Baxendale, I. R.; Ley, S. V. Org. Lett. 2011, 13, 3312.
(c) Newby, J. A.; Huck, L.; Blaylock, D. W.; Witt, P. M.; Ley, S. V.;
Browne, D. L. Chem. - Eur. J. 2014, 20, 263.
(20) For detailed optimization and the influence of the flow rate in
(21) Yates, I. E.; Porter, J. K. Appl. Environ. Microb. 1982, 44, 1072.
D
Org. Lett. XXXX, XXX, XXX−XXX