strategy to arrive at 3,4-dihydropyridin-2-ones (DHP-2-ones,
1).5
Scheme 1. Initial Results of Isonitrile-Based MCRs Using 1
Figure 1. Scaffold diversity from our 1-azadiene based MCRs.
In this case, the normally rather reactive isocyanide
group1,6 is retained in the DHP-2-one MCR products. This
allows the combination with a second complexity-generating
reaction, as we demonstrated by the (one-pot) combination
of this four-component reaction (4CR) with the well-known
Passerini 3CR leading to a 6CR for conformationally
constrained depsipeptides.7 To further explore the synthetic
potential of this concept, we turned our attention to the
combination of our 4CR for isocyano DHP-2-ones 1 with
another isonitrile-based MCR, the Ugi 4CR.1a,e,8 First, the
Ugi reaction of 1a, paraformaldehyde, benzylamine, and
propionic acid was studied. Indeed, Ugi product 6 was
obtained, albeit in moderate yield (29%), together with
iminoimidazolidine 7a (61%, Scheme 1) and unreacted 1a
(10%).9 We then studied the combination of 1b with
isobutyraldehyde, benzylamine, and propionic acid. This did
not afford the expected Ugi product nor the corresponding
iminoimidazolidine. Instead, a product was isolated that
clearly did not incorporate the propionic acid. Thorough
spectroscopic analysis led to dihydrooxazolopyridine (DHOP)
8b (Scheme 1, 43%) as the most plausible structure, which
is the result of the condensation between 1b and the imine
derived from the aldehyde and amine components. It should
be noted that N-alkylated derivatives of 1 were successfully
combined with aldehydes, amines, and carboxylic acids to
afford a diverse set of Ugi products.9a X-ray crystal structure
determination of 8k (Table 1, entry 11) confirmed the
unprecedented heterobicyclic DHOP structure10 (Figure 2)
as the product of this new 3CR.
Figure 2. Displacement ellipsoid plot of 8k. Drawn at 50%
probability level. The compound is crystallized as a racemate in
the centrosymmetric space group P1.
can therefore be considered as promising alternatives for the
oxazolopyridines. The novelty and interesting products of
this MCR spurred us to find optimal conditions and
investigate the scope of the reaction. The absence of the
carboxylic acid apparently excludes several side reactions,
since the yield of 8b increased considerably when 1b was
treated with only isobutyraldehyde and benzylamine in
MeOH at room temperature (cf. Scheme 1 and entry 2, Table
1). Formation of 8b proceeded more efficiently in the polar
protic solvent MeOH (73%) than in aprotic THF (49%) or
less polar CH2Cl2 (29%). The 3CR performs optimally when
Oxazolopyridines display anti-inflammatory,11 antibacte-
rial,12 antipyretic, and analgesic properties.13 Although not
aromatic, the DHOPs are fairly flat bicyclic ring systems
with R2 and R3 substituents in a trans-pseudodiaxial orien-
tation (as is evident from the crystal structure of 8k) and
(10) The dihydrooxazolopyridine (DHOP) scaffold has not been reported
previously and there are only limited reports of the synthesis of iminoox-
azolines: (a) Middleton, W. J.; Krespan, C. G. J. Org. Chem. 1968, 33,
3625. (b) Jackson, B.; Gakis, N.; Ma¨rky, M.; Hanse, H.-J.; von Philipsborn,
W.; Schmid, H. HelV. Chim. Acta 1972, 55, 916. (c) Gru¨tzmacher, H.;
Roesky, H. W. Chem. Ber. 1986, 119, 2127. (d) Koksch, B.; Mutze, K.;
Osipov, S. N.; Golubev, A. S.; Burger, K. Tetrahedron Lett. 2000, 41, 3825.
(e) Donati, D.; Fusi, S.; Ponticelli, F Eur. J. Org. Chem. 2002, 4211. (f)
Wehner, V.; Stilz, H.-U.; Osipov, S. N.; Golubev, A. S.; Sieler, J.; Burger,
K. Tetrahedron 2004, 60, 4295. (g) Shevchenko, I.; Rogalyov, A.;
Rozhenko, A. B.; Ro¨schenthaler, G.-V. Eur. J. Inorg. Chem. 2007, 254,
and ref 14.
(6) (a) Bon, R. S.; Van Vliet, B.; Sprenkels, N. E.; Schmitz, R. F.; de
Kanter, F. J. J.; Stevens, C. V.; Swart, M.; Bickelhaupt, F. M.; Groen, M. B.;
Orru, R. V. A. J. Org. Chem. 2005, 70, 3542. (b) Elders, N.; Schmitz,
R. F.; de Kanter, F. J. J.; Ruijter, E.; Groen, M. B.; Orru, R. V. A. J. Org.
Chem. 2007, 72, 6135. (c) Elders, N.; de Kanter, F. J. J.; Ruijter, E.; Groen,
M. B.; Orru, R. V. A. Chem. Eur. J. 2008, 14, 4961.
(7) Paravidino, M.; Scheffelaar, R.; Schmitz, R. F.; de Kanter, F. J. J.;
Groen, M. B.; Ruijter, E.; Orru, R. V. A. J. Org. Chem. 2007, 72, 10239.
(8) (a) Ugi, I. Angew. Chem. 1962, 74, 9; Angew. Chem., Int. Ed. 1962,
1, 8. (b) Marcaccini, S.; Torroba, T. Nat. Protoc. 2007, 2, 632
.
(9) (a) Scheffelaar, R.; Klein Nijenhuis, R. A.; Paravidino, M.; Lutz,
M.; Spek, A. L.; Ehlers, A. W.; de Kanter, F. J. J.; Groen, M. B.; Ruijter,
E.; Orru, R. V. A. J. Org. Chem. Manuscript accepted. (b) Similar
iminoimidazolidines and R-amino amidines were previously isolated in our
study towards ꢀ-turn mimics; see ref 9a.
(11) Clark, R. L.; Pessolano, A. A.; Witzel, B.; Lanza, T.; Shen, T. Y.
J. Med. Chem. 1978, 21, 1158.
(12) Suzuki, N. Chem. Pharm. Bull. 1980, 761.
(13) Shen, T. Y.; Clark, R. L.; Pessolano, A. A.; Witzel, B. E.; Lanza,
T., U.S. Patent 4,038,396, 1977.
126
Org. Lett., Vol. 11, No. 1, 2009