10.1002/anie.202000771
Angewandte Chemie International Edition
RESEARCH ARTICLE
structure. In other words, a hierarchical self-assembly occured in
two and three dimensions simultaneously.
[1]
(a) Newkome, G. R.; Wang, P.; Moorefield, C. N.; Cho, T. J.; Mohapatra,
P. P.; Li, S.; Iancu, V. Science. 2006, 312(5781), 1782-1785. (b) Sarkar,
R.; Guo, K.; Moorefield, C. N.; Saunders, M. J.; Wesdemiotis, C.;
Newkome, G. R. Angew. Chem. Int. Ed. 2014, 126(45), 12378-12381. (c)
Newkome, G. R.; Moorefield, C. N. Chem. Soc. Rev. 2015, 44(12), 3954-
3967. (d) Zhang, X.; Li, N.; Gu, G. C.; Wang, H.; Nieckarz, D.; Szabelski,
P.; Lu, J. T; Wu, K; Wang,Y,F. ACS Nano. 2015, 9(12), 11909-11915. (e)
Li, N.; Zhang, X.; Gu, G. C.; Wang, H.; Nieckarz, D.; Szabelski, P.; Peng,
L. M. Chinese. Chem. Lett. 2015, 26(10), 1198-1202. (f) Zhang, X.; Li,
N.; Liu, L.; Gu, G.; Li, C.; Tang, H.; Wang, Y. Chem. Commun.
2016, 52(69), 10578-10581. (g) Xing, L.; Peng, Z.; Li, W.; Wu, K. Acc.
Chem. Res, 2019, 52(4): 1048-1058. (h) Sun, Q.; Cai, L.; Ma, H.; Yuan,
C.; Xu, W. Chem.Commun. 2015, 51(75), 14164-14166. (i) Jiang, Z.; Li,
Y.; Wang, M.; Liu, D.; Yuan, J.; Chen, M.; Li, X; Wang, P. Angew. Chem.
Int. Ed. 2017, 129(38), 11608-11613.
Notably, regular 3D crystals appeared after 48 h incubation (Fig.
4d-e). The AFM height image suggested that the thickness of 3D
crystals was about 50 nm (Fig. 4f), which corresponded to about
twelve layers of WGA. Significantly, both the results from 2D class
average and Fourier-transform for this 3D crystal (Fig. 4d inset,
4e inset) were similar to those of 2D lattices (Fig. 3c, 3b inset),
suggesting that the 3D crystals shared analogous protein packing
with 2D lattices.
To summarize, a possible self-assembly mechanism of 3D
crystals was proposed as illustrated in Fig. S21. Initially, the WGA
still assembled into triangular trimers through RhB dimerization at
strong binding sites. Then, the RhB dimerization at weak binding
sites enabled the triangular trimers assemble into 2D clusters; at
the same time, the interlayer RhB dimerization contributed by
more inducing ligands allowed the clusters to further grow in the
third dimension, namely, more inducing ligands permitted the
simultaneous occurrence of self-assembly in two dimensions and
three dimensions. As a result, these clusters gradually evolved
into 3D crystals through self-assembly.
[2]
[3]
(a) Khire, T. S.; Kundu, J.; Kundu, S. C.; Yadavalli, V. K. Soft Matter.
2010, 6(9), 2066-2071. (b) Shin, S.; Gu, M. L.; Yu, C. Y.; Jeon, J.; Lee,
E.; Choi, T. L. J. Am. Chem. Soc. 2018, 140(1), 475-482. (c) Hernández,
N. E.; Hansen, W. A.; Zhu, D.; Shea, M. E; Khalid. M.; Manichev, V.;
Putnins, M.; Chen, M. Y.; Dodge, A. G.; Yang, L.; Berríos, I. M.; Banal,
M.; Rechani, P.; Gustafsson, T.; Feldman, L. C.; Lee, S. H.; Wackett, L.
P.; Dai, W.; Khare, S. D. Nat. Chem. 2019, 11(3): 605-614.
(a) Wang, M.; Wang, C.; Hao, X. Q.; Liu, J.; Li, X.; Xu, C.; Li, X. J. Am.
Chem. Soc. 2014, 136(18), 6664-6671. (b) Jiang, Z.; Li, Y.; Wang, M.;
Song, B.; Wang, K.; Sun, M.; Li, X; Wang, P. Nat. Commun. 2017, 8,
15476-15484. (c) Wang, L.; Liu, R.; Gu, J.; Song, B.; Wang, H.; Jiang,
X.; Wang, M; Li, X. J. Am. Chem. Soc. 2018, 140(43), 14087-14096. (d)
Yin, G. Q.; Wang, H.; Wang, X. Q.; Song, B.; Chen, L. J.; Wang, L.; Li,
X. Nat. Commun. 2018, 9(1), 567-576.
Conclusion
In this work, we constructed Pascal-triangle 2D lattices using well-
selected protein building blocks with anisotropic shapes and two
sets of carbohydrate binding sites. Moreover, the dynamic and
exchangeable nature of non-covalent interactions make the
further manipulation on 2D lattices to 3D crystals possible. Such
results not only demonstrate the first construction of Pascal-
triangle 2D lattice from native protein, but also drive the protein
lattices fabricated by our inducing ligand strategy to an
unprecedented level. We believe that this work opens a new
avenue on fabrication of novel protein assemblies with desired
shapes, sizes and functionalities, which might help us to
understand the design principles underlying living organism better.
[4]
[5]
Barnsley, M. F. Fractals Everywhere. Morgan Kaufmann Publishers:
Burlington, MA, 1993.
(a) Lakhtakia, A.; Messier, R.; Varadan, V. K.; Varadan, V. V. J. Phys. A:
Math. Gen. 1987, 20(11), 735-738. (b) Reiter, A. M. Fibonacci. Quart.
1991, 31(2), 112-120.
[6]
[7]
(a) Weibel, E. R. Am. J. Physiol-Lung.C. 1991, 261(6): 361-369. (b) Losa,
G. A. Fractals in biology and medicine. 2006. (c) Reznikov, N; Bilton, M.;
Lari, L.; Stevens, M. M.; Kröger, R. Science. 2018, 360, No. eaao2189.
(a) Salgado, E. N.; Radford, R. J.; Tezcan, F. A. Acc. Chem. Res. 2010,
43, 661 – 672. (b) Koji, O.; Akira, O.; Takashi, H. Chem.Commun. 2012,
48, 11714 – 11726; (c) Yeates, T. O.; Liu, Y.; Laniado, J. Curr. Opin.
Struct. Biol. 2016, 39, 134 – 143. (d) Luo, Q.; Hou, C.; Bai, Y.; Wang, R.;
Liu, J. Chem. Rev. 2016, 116(22), 13571-13632. (e) Bai, Y.; Luo, Q.; Liu,
J. Chem. Soc. Rev. 2016, 45(10), 2756-2767. (f) Sun, H.; Luo, Q.; Hou,
C.; Liu, J. Nano Today. 2017, 14, 16-41. (g) Baneyx, F.; Matthaei, J.
F. Curr. Opin. Biotech. 2014, 28, 39-45. (h) Norn, C. H.; André, I. Curr.
Opin. Struc. Biol. 2016, 39, 39-45. (i) King, N. P.; Bale, J. B.; Sheffler,
W.; McNamara, D. E.; Gonen, S., Gonen; Baker, D. Nature. 2014, 510,
103-108. (j) Huang, P. S.; Boyken, S. E.; Baker, D. Nature. 2016, 537,
320-327. (k) Klinker, K; Schafer, O; Barz, M. Angew. Chem. Int. Ed.
2017, 56(32), 9608-9613.
Acknowledgements
G.C. thanks NSFC/China (No. 51721002, 21861132012 and
91527305) for financial support. Y.L. thanks the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) -
Project number 410871749 for financial support. H.D. thanks
NSFC/China (No. 21604060 and 11874045) for financial support.
The authors would like to thank the Joint Lab for Structural
Research at the Integrative Research Institute for the Sciences
(IRIS Adlershof, Berlin) for Cryo-EM imaging. We thank Dr. Xiao
Xu and Dr. Qidi Ran for helpful discussions. This work is
supported by Shanghai Municipal Science and Technology Major
Project (No.2018SHZDZX01) and ZJ Lab.
[8]
[9]
(a) Brodin, J. D.; Smith, S. J.; Carr, J. R.; Tezcan, F. A. J. Am. Chem.Soc.
2015, 137, 10468 – 10471. (b) Biswas, S.; Kinbara, K.; Oya, N. I.;
Taguchi, H.; Aida, T. J. Am. Chem. Soc. 2009, 131, 7556 –7557. (c) Miao,
L.; Fan, Q.; Zhao, L.; Qiao, Q.; Zhang, X.; Hou, C.; Liu, J. Chem.
Commun. 2016, 52(21), 4092-4095.
(a) Chou, T. F.; So, C.; White, B. R.; Carlson, J. C.; Sarikaya, M.; Wagner,
C. R. ACS Nano. 2008, 2(12), 2519 – 2525. (b) Bai, Y.; Luo, Q.; Zhang,
W.; Miao, L.; Xu, J.; Li, H.; Liu, J. J. Am. Chem. Soc. 2013,135(30), 10966
– 10969.
[10] (a) Li, X.; Qiao, S.; Zhao, L.; Liu, S.; Li, F.; Yang, F.; Liu, J. ACS Nano.
2019, 13(2), 1861-1869. (b) Der, B. S.; Kuhlman, B. Curr. Opin. Struc.
Biol. 2013, 23(4), 639-646.
Keywords: inducing ligand • pascal triangle • self-assembly •
[11] (a) Sakai, F.; Yang, G.; Weiss, M. S.; Liu, Y.; Chen, G.; Jiang, M. Nat.
Commun. 2014, 5, 4634-4641. (b) Yang, G.; Zhang, X.; Kochovski, Z.;
Zhang, Y.; Dai, B.; Sakai, F.; Liu, C; Chen, G.; Jiang, M. J. Am. Chem.
Soc. 2016, 138(6), 1932-1937. (c) Yang, G.; Ding, H. M.; Kochovski, Z.;
WGA
This article is protected by copyright. All rights reserved.