Paper
Photochemical & Photobiological Sciences
rescent sensor for Fe(III), Tetrahedron Lett., 2016, 57, 2399– 31 J. Li, D. Yim, W. D. Jang and J. Yoon, Recent progress in
2402.
the design and applications of fluorescence probes con-
taining crown ethers, Chem. Soc. Rev., 2017, 46, 2437–
2458.
18 J. F. Liu and Y. Qian, A novel naphthalimide-rhodamine
dye: Intramolecular fluorescence resonance energy transfer
and ratiometric chemodosimeter for Hg2+ and Fe3+, Dyes 32 J. Qin, J. Yan, B. Wang and Z. Yang, Rhodamine-enaphtha-
Pigm., 2017, 136, 782–790.
lene conjugate as a novel ratiometric fluorescent probe for
19 M. Y. Zhang, C. C. Shen, T. Jia, J. W. Qiu, H. Zhu and
recognition of Al3+, Tetrahedron Lett., 2016, 57, 1935–1939.
Y. Gao, One-step synthesis of rhodamine-based Fe3+ fluo- 33 F. Hu, B. Zheng, D. Wang, M. Liu, J. Du and D. Xiao, A
rescent probes via mannich reaction and its application in
living cell imaging, Spectrochim. Acta, Part A, 2020, 231,
118105–118112.
novel dual-switch fluorescent probe for Cr(III) ion based on
PET-FRET processes, Analyst, 2014, 139, 3607–3613.
34 M. Annadhasan and N. Rajendiran, Highly selective and
sensitive colorimetric detection of Hg(II) ions using green
synthesized silver nanoparticles, RSC Adv., 2015, 5, 94513–
94518.
35 M. Li, H. Zhou, L. Shi, D. Li and Y. Long, Ion-selective gold-
ethiol film on integrated screen printed electrodes for ana-
lysis of Cu(II) ions, Analyst, 2014, 139, 643–648.
36 L. Chang, Q. Gao, S. Liu, D. Luo, B. Han, K. Xia and
C. Zhou, A single polymer chemosensor for differential
determination of Hg2+ and Cu2+ in pure aqueous media
without mutual interference, Mater. Today Commun., 2019,
19, 148–156.
20 E. L. Mackenzie, K. Iwasaki and Y. Tsuji, Intracellular iron
transport and storage: from molecular mechanisms to
health implications, Antioxid. Redox Signal., 2008, 10, 997–
1030.
21 X. Cao, F. Zhang, Y. Bai, X. Ding and W. Sun, A highly selec-
tive “Turn-on” fluorescent probe for detection of Fe3+ in
cells, J. Fluoresc., 2019, 29, 425–434.
22 Z. Yang, M. She, B. Yin, J. Cuo, Y. Zhang and W. Sun, Three
rhodamine-based “Off-On” chemosensors with high
selectivity and sensitivity for Fe3+ imaging in living cells,
J. Org. Chem., 2012, 77, 1143–1147.
23 Y. Liu, C. X. Zhao, X. Y. Zhao, H. L. Liu, Y. B. Wang, 37 L. Bai, F. Tao, L. Li, A. Deng, C. Yan, G. Li and L. Wang, A
Y. G. Du and D. B. Wei, A selective N, N-dithenoyl-
rhodamine based fluorescent probe for Fe3+ detection
in aqueous and living cells, J. Environ. Sci., 2020, 90, 180–
188.
simple turn-on fluorescent chemosensor based on Schiff
base-terminated water-soluble polymer for selective detec-
tion of Al3+ in 100% aqueous solution, Spectrochim. Acta,
Part A, 2019, 214, 436–444.
24 H. Wang, B. B. Chen and S. Q. Zhu, Chip-based magnetic 38 L. Bai, G. Li, L. Li, M. Gao, H. Li, F. Tao, A. Deng, S. Wang
solid-phase microextraction online coupled with micro
HPLC-ICPMS for the determination of mercury species in
cells, Anal. Chem., 2016, 88, 796–802.
and L. Wang, Schiff base functionalized PEG as a high
efficient fluorescent chemosensor for Al3+ detection in
100% aqueous solution, React. Funct. Polym., 2019, 139, 1–
8.
25 G. Reddi and C. Rao, Analytical techniques for the determi-
nation of precious metals in geological and related 39 T. Geng, C. Guo, Y. Dong, M. Chen and Y. Wang, Turn-on
materials, Analyst, 1999, 124, 1531–1540.
fluorogenic and chromogenic detection of cations in com-
plete water media with poly (N-vinyl pyrrolidone) bearing
rhodamine B derivatives as polymeric chemosensor, Polym.
Adv. Technol., 2016, 27, 90–97.
26 N. Amiri, M. K. Rofouei and J. B. Ghasemi, Multivariate
optimization, preconcentration and determination of
mercury ions with (1-(p-acetyl phenyl)-3-(o-methyl-
benzoate)) triazene in aqueous samples using ICP-AES, 40 G. Li, L. Bai, F. Tao, A. Deng and L. Wang, A dual chemo-
Anal. Methods, 2016, 8, 1111–1119.
27 S. Caroli, G. Forte, A. Iamiceli and B. Galoppi,
Determination of essential and potentially toxic trace
sensor for Cu2+ and Hg2+based on a rhodamine-terminated
water-soluble polymer in 100% aqueous solution, Analyst,
2018, 143, 5395–5403.
elements in honey by inductively coupled plasma-based 41 Q. M. Wang, W. Gao, X. H. Tang, Y. Liu and Y. Li, A fluo-
techniques, Talanta, 1999, 50, 327–336.
rescence turn-on sensor for aluminum ion by a naphthal-
28 W. S. Zhong, T. Ren and L. J. Zhao, Determination of Pb
dehyde derivative, J. Mol. Struct., 2016, 1109, 127–130.
(Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and 42 W. Y. He, R. Q. Liu, Y. H. Liao, G. H. Ding, J. L. Li, W. Liu,
Ni (Nickel) in Chinese tea with high-resolution continuum
source graphite furnace atomic absorption spectrometry,
Food Drug Anal., 2016, 24, 46–55.
L. Y. Wu, H. J. Feng, Z. F. Shi and M. X. He, A new 1,2,3-tri-
azole and its rhodamine B derivatives as a fluorescence
probe for mercury ions, Anal. Biochem., 2020, 598, 113690–
113702.
29 N. Promphet, P. Rattanarat, R. Rangkupan, O. Chailapakul
and N. Rodthongkum, An electrochemical sensor based on 43 Z. L. Yang, S. Chen, Y. X. Zhao, P. T. Zhou and Z. H. Cheng,
graphene/polyaniline/polystyrene nanoporous fibers modi-
fied electrode for simultaneous determination of lead and
cadmium, Sens. Actuators, B, 2015, 207, 526–534.
Hg2+ chromogenic and fluorescence indicators based on
rhodamine derivatives bearing thiophene group, Sens.
Actuators, B, 2018, 266, 422–428.
30 B. Kaur, N. Kaur and S. Kumar, Colorimetric metal ion 44 O. Mecit, A fast-response, highly selective, chromogenic
sensors-a comprehensive review of the years 2011-2016,
and fluorescent chemosensor for the detection of Hg2+
Coord. Chem. Rev., 2018, 358, 13–69.
ions, Sens. Actuators, B, 2017, 249, 217–228.
Photochem. Photobiol. Sci.
This journal is © The Royal Society of Chemistry and Owner Societies 2020