XRD Patterns of Bimetallic FexM100-x Nanoclusters
J. Phys. Chem. B, Vol. 105, No. 25, 2001 5861
isomers such as molecular clusters, icosahedron, decahedron,
cuboctahedron, and their deformed structures.44 The molecular
clusters and the deformed structures of icosahedron, decahedron,
and cuboctahedron provide the real amorphous pattern. In the
present case, the regular structures of icosahedron, decahedron,
and cuboctahedron also exist, although these structures were
not distinguishable in the observed XRD patterns, probably
because the amount of the nanoclusters with the regular
structures was not enough to show their characteristic XRD
patterns, respectively. That is, the present amorphous pattern
in FexW100-x nanoclusters contains all these contributions. Note
that the amorphous structure in the FexW100-x nanoclusters began
to appear at x ) 12.8 whose cluster diameter is expected to be
somewhat below 1.6 nm as judged from Figure 6. This implies
that the amorphous structure in the FexW100-x nanoclusters was
also primarily due to a tiny cluster size as in the pure
nanoclusters. On the other hand, note that the amorphous
structure was also observed in both Fe-Mo and Fe-W
(4) Chien, C. L.; Liou, S. H.; Kofalt, D.; Yu, W.; Egami, T.; McGuire,
T. R. Phys. ReV. B 1986, 33, 3247.
(
5) Toshima, N.; Harada, M.; Yamazaki, Y.; Asakura, K. J. Phys.
Chem. 1992, 96, 9927.
(6) Torigoe, K.; Nakajima, Y.; Esumi, K. J. Phys. Chem. 1993, 97,
8
5
304.
(7) Esumi, K.; Wakabayashi, M.; Torigoe, K. Colloids Surf. 1996, 109,
5.
(8) Herr, U.; Jing, J.; Gonser, U.; Gleiter, H. Solid State Commun. 1990,
76, 197.
(9) Chang, L. L.; Esaki, L. Surf. Sci. 1980, 98, 70.
(
(
10) Huang, X.; Mashimo, T. J. Alloys Comp. 2000, 296, 183.
11) Eckert, J.; Holzer, J. C.; Krill, C. E., III; Johnson, W. L. J. Mater.
Res. 1992, 7, 1980.
12) Boldrick, M. S.; Yang, E.; Wagner, C. N. J. J. Non-Cryst. Solids
992, 150, 478.
13) Shen, T. D.; Wang, K. Y.; Quan, M. X.; Wang, J. T. J. Appl. Phys.
1992, 71, 1967.
14) Eckert, J.; Holzer, J. C.; Krill, C. E., III; Johnson, W. L. J. Appl.
Phys. 1993, 73, 2794.
15) Hellstern, E.; Fecht, H. J.; Fu, Z.; Johnson, W. L. J. Appl. Phys.
(
1
(
(
(
1
6
1
989, 65, 305.
(16) Fecht, H. J.; Han, G.; Fu, Z.; Johnson, W. L. J. Appl. Phys. 1990,
7, 1744.
nanoclusters with the cluster diameter of 2-15 nm produced
(
17) Eckert, J.; Holzer, J. C.; Johnson, W. L. J. Appl. Phys. 1993, 73,
31.
(18) Ma, E.; Atzmon, M. Phys. ReV. Lett. 1991, 67, 1126.
19) Hernando, A.; Crespo, P.; Escorial, A. G.; Barandiaran, J. M. Phys.
ReV. Lett. 1993, 70, 3521.
20) Yavari, A. R.; Desr e´ , P. J.; Benameur, T. Phys. ReV. Lett. 1992,
68, 2235.
by mechanical attrition.1
0,13,45
The amorphous structure observed
in mechanical attrition was, however, not due to a small cluster
size but due to a nonequilibrium phase composition because
the amorphous structure can be produced at any cluster size in
case of a nonequilibrium phase composition.
(
(
(
21) Aning, A.; Oliver, F. W.; Courtney, T. H.; May, L. J. Appl. Phys.
1
993, 73, 5749.
(
Conclusion
22) Crespo, P.; Hernando, A.; Yavari, R.; Drbohlav, O.; Escorial, A.
G.; Barandiaran, J. M.; Or u´ e, I. Phys. ReV. B 1993, 48, 7134.
23) Ca e¨ r, G. L.; Delcroix, P.; Shen, T. D.; Malaman, B. Phys. ReV. B
996, 54, 12775.
24) Lemoine, C.; Fnidiki, A.; Lemarchand, D.; Teillet, J. J. Magn.
Magn. Mater. 1999, 203, 184.
25) Huh, S. H.; Oh, S. J.; Kim, Y. N.; Lee, G. H. ReV. Sci. Instrum.
999, 70, 4366.
26) The filament temperature was obtained from the technical data
In this work, we produced the equilibrium phase FexMo100-x
and FexW100-x nanoclusters with cluster size of 1.5-4.5 nm by
thermally decomposing a mixture of two metal carbonyl vapor
species. The fwhm of the XRD peaks became broader as the
degree of alloying increased. We noticed that the cluster size
effect on the fwhm of the XRD peaks was stronger than the
strain effect because the cluster size of the bimetallic nanoclus-
ters produced in this work was so small. The solubilities of
equilibrium phase FexMo100-x and FexW100-x nanoclusters
produced in this work were much lower than those of the
nonequilibrium phase bimetallic nanoclusters produced by
mechanical attrition and those of the nonequilibrium phase alloys
produced by ion mixing, but 2-3 times higher than those of
the bulk alloys. It is important to note that the higher solubilities
of the bimetallic nanoclusters than those of the corresponding
bulk alloys allow us to produce bimetallic nanoclusters having
electric, magnetic, and mechanical properties that are somewhat
different from those of the corresponding bulk alloys, which
are important for industrial applications. This allows us to design
nanodevices with special functions. Also, the equilibrium phase
bimetallic nanoclusters produced by the present method are
thermally more stable in composition than the nonequilibrium
phase bimetallic nanoclusters produced by mechanical attrition
and thus will be useful for high-temperature applications.
(
1
(
(
1
(
provided by the Pelican Wire Company, Inc., 6266 Taylor Road, Naples,
FL 34109-1896, USA.
(
(
27) Lee, G. H.; Huh, S. H.; Jung, H. I. J. Mol. Struct. 1998, 440, 141.
28) Huh, S. H.; Kim, H. K.; Park, J. W.; Lee, G. H. Phys. ReV. B 2000,
62, 2937.
(29) Oh, S. J.; Huh, S. H.; Kim, H. K.; Park, J. W.; Lee, G. H. J. Chem.
Phys. 1999, 111, 7402.
30) Klug, H. P.; Alexander, L. E. X-ray Diffraction Procedures, 2nd
(
ed.; Wiley: New York, 1974; Chapter 9.
(31) Cullity, B. D. Elements of X-ray Diffraction, 2nd ed.; Addison-
Wesley: Reading, 1978; Chapter 12.
(32) Jesser, W. A.; Shiflet, G. J.; Allen, G. L.; Crawford, J. L. Mater.
Res. InnoVat. 1999, 2, 211.
(33) Couchman, P. R.; Jesser, W. A. Nature 1977, 269, 481.
(
34) Abrahamson, E. P., II; Lopata, S. L. Trans. Met. Soc. AIME 1966,
36, 76.
35) Binary Alloy Phase Diagrams; Massalski, T. B., Ed.; American
2
(
Society of Metals: Metals Park, 1986.
(36) Hume-Rothery, W. The Structures of Alloys of Iron; Pergamon:
Oxford, 1966; Chapter 5.
(37) de Boer, F. R.; Boom, R.; Mattens, W. C. M.; Miedema, A. R.;
Niessen, A. K. Cohesion in Metals; North-Holland: Amsterdam, 1988;
Chapter 3.
(
(
(
(
38) Miedema, A. R. Philips Tech. ReV. 1976, 36, 217.
39) Watson, R. E.; Bennett, L. H. Phys. ReV. Lett. 1979, 43, 1130.
40) Zhang, Z. J. J. Appl. Phys. 1997, 81, 2027.
Acknowledgment. This work was supported by the KNU
Research Fund (2000) and KRF (2000-041-D00137). We thank
the Korea Basic Science Institute for allowing us to use the
X-ray diffraction spectrometer and inductively coupled plasma
atomic emission spectrometer at a membership rate.
41) Lin, C.; Chen, Y. G.; Liu, B. X. Nucl. Instrum. Methods B 1999,
148, 946.
(42) Jung, H. I.; Huh, S. H.; Oh, S. J.; Kim, Y. N.; Kim, H. K.; Park,
J. W.; Chung, J. J.; Lee, G. H. J. Korean Phys. Soc. 1999, 35, 265. We
multiplied the observed fwhm provided in Table 2 by 1.85.
(43) CRC, Handbook of Chemistry and Physics, 65th ed.; Weast, R. C.,
References and Notes
Astle, M. J., Beyer, W. H., Eds.; CRC Press: Boca Raton, Florida, 1985;
p. F-23 and p. F-26.
(44) Vogel, W. Cryst. Res. Technol. 1998, 33, 1141.
(45) Schaaf, P.; Rixecker, G.; Yang, E.; Wagner, C. N. J.; Gonser, U.
Hyperfine Interact. 1994, 94, 2239.
(1) Benjamin, J. S. Metall. Trans. 1970, 1, 2943.
(2) Weeber, A. W.; Bakker, H. Physica B 1988, 153, 93.
(3) Koch, C. C. Nanostruct. Mater. 1993, 2, 109.