S. Zanganeh et al. / Journal of Alloys and Compounds 507 (2010) 494–497
497
the analysis of Kasuye et al. [27], the structure of 1540–1600 cm 1
can be understood by z1-folding of the graphite phonon dispersion
relation.
−
4. Conclusions
This paper investigates the application of a special shape of
iron nanostructures as a catalyst for high-yield preparation of high
purity CNTs with desirable nanostructure. Flower-like Fe nanos-
tructure was produced as an appropriate catalyst for preparation of
highly pure CNT via electrodeposition from iron sulfate electrolyte
on a platinum electrode. The growth mechanisms were admin-
istered via linear sweep voltammetry, chronopotentiometry and
chronamperometry. It was found that the electrodeposition was
charge-transfer controlled. BET confirmed high surface area of the
Fe catalyst. Elemental mapping and EDS results showed uniform
distribution of Fe in the catalyst with negligible impurities. The
structure of the synthesized carbon nanotubes, and flower-like Fe
nanostructure were investigated by scanning electron microscopy,
transmission electron microscopy, Raman spectroscopy and X-ray
diffraction. Using the CVD method, long carbon nanotubes with
small wall-thicknesses and wide hollow cores in various diameters
between 9 nm and 35 nm were obtained.
Fig. 6. High-resolution TEM image of the synthesized walls of CNTs grown on the
Fe nanostructures at 8,500,000 magnification.
References
[
[
[
[
[
1] S. Iijima, Nature 354 (1991) 56.
2] M.M. Treacy, T.W. Ebbesen, J.M. Gibson, Nature 381 (1996) 678.
3] N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579.
4] K. Harigaya, M. Fujita, Phys. Rev. B 473 (1993) 1656.
5] (a) D.S. Bethune, C.H. Kiang, M.S. de Urief, G. Gorman, R. Savoy, J. Vazquez, R.
Beyers, Nature 363 (1993) 605;
(
(
(
b) P.D. Kumavor, E. Donkor, B.C. Wang, IEEE J. Sel. Top. Quantum Electron. 12
2006) 697;
c) C.B. Nrusingh, J.K. Gamelin, J. Biomed. Opt. 15 (1) (2010) 016012.
[
[
6] P. Singh, Chalcogenide Lett. 7 (2010) 389.
7] W.K. Maser, E. Mun˜oz, A.M. Benito, M.T. Martı ˇı nez, G.F. de la Fuente, Y. Maniette,
Fig. 7. Raman spectroscopy diagram of the CNTs grown on flower-like Fe nanos-
E. Anglaret, J.-L. Sauvajol, Chem. Phys. Lett. 292 (1998) 587.
tructure.
[8] M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K.
Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M.
Walton, Nature 388 (1997) 52.
Fe nanostructured substrates. Carbon products have hollow struc-
tured graphitic sheets on multiwalled carbon nanotubes (MWCNT)
which are aligned along the nanotube axis.
[9] R. Sen, A. Govindaraj, C.N.R. Rao, Chem. Phys. Lett. 267 (1997) 276.
10] Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegel, P.N. Provencio,
Science 282 (1998) 1105.
11] X. Ma, E.G. Wang, W. Zhou, D.A. Jefferson, J. Chen, S. Deng, N. Xu, J. Yuan, Appl.
Phys. Lett. 75 (1999) 3105.
12] W.Z. Li, S.S. Xie, L.X. Quain, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang,
Science 274 (1996) 1701.
[13] S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassen, H. Dai, Science
283 (1999) 512.
[
[
[
Raman spectra can be used to reveal the graphitic nature of
the fabricated CNTs (Fig. 7). A G-peak is, therefore, seen at about
−
590 cm originating mainly from the graphite in plane E vibra-
2g
1
1
−1
tion mode and a D-peak at about 1350 cm attributed to a finite
particle size effect and/or structural disorder within the carbon
[
[
14] C.J. Lee, J. Park, Y. Huh, J.Y. Lee, Chem. Phys. Lett. 343 (2001) 33.
15] P. Nikolaev, M.J. Bronikowski, R. Kelley Bradley, F. Rohmund, D.T. Colbert, K.A.
Smith, R.E. Smalley, Chem. Phys. Lett. 313 (1999) 91.
−1
sheets. The 1350 cm
band is not a Raman active mode of the
graphene layer. It is generally attributed to the defects in the curved
graphene layers, tube ends and staging disorder. The D-band is
associated with vibrations of carbon atoms with dangling bonds
in plane terminations of the disordered graphite or glassy carbons.
The intensity ratio of ID/IG is known to depend on the structural
characteristics of CNTs, and is a usual measurement of the graphitic
[16] Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama,
Chem. Phys. Lett. 385 (2004) 298.
[
17] K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima, Science 306
2004) 1362.
(
[18] C.H. Kiang, J. Chem. Phys. 113 (2000) 4763.
[19] G.G. Tibbetts, J. Cryst. Growth 66 (1984) 632.
[
20] M. Yudasaka, R. Yamada, N. Sensui, T. Wilkins, T. Ichihashi, S. Iijima, J. Phys.
Chem. B 103 (1999) 6224.
ordering. The ID/I value of the spectrum suggests a defective struc-
G
[21] A.N. Andriotis, M. Menou, G. Frandakis, Phys. Rev. Lett. 85 (2000) 3193.
[22] H.T. Ng, B. Chen, J.E. Koehne, A.M. Cassell, J. Li, J. Han, M. Meyyappan, J. Phys.
Chem. B 107 (2003) 8484.
ture or a lower degree of graphitization in CNT structure. It indicates
2
that the number of sp -bonded carbon atoms without dangling
[
23] H.M. Christen, A.A. Puretzky, H. Cui, K. Belay, P.H. Fleming, D.B. Geohegan, Nano
Lett. 4 (2004) 1939.
2
bonds has increased at the expense of disordered carbon. sp -
bonded carbon is the bonding of carbon atoms in a single graphite
layer of perfect hexagonal lattice. Other carbon allotropes made of
concentric multiwalled layers of two-dimensional hexagonal car-
bon lattice such as nanotubes and nanofibers display the same
vibration and no other characteristic Raman features. According to
[24] B. Chen, G. Parker, J. Han, M. Meyyappan, A.M. Cassell, Chem. Mater. 14 (2002)
891.
1
[
[
25] I.A. Kinloch, M.S. Shaffer, Y.M. Lam, A.H. Windle, Carbon 42 (2004) 101.
26] A. Bianco, K. Kostarelos, M. Prato, Curr. Opin. Chem. Biol. 9 (2005) 674.
[27] A. Kasuya, Y. Sasaki, Phys. Rev. Lett. 78 (1997) 4434.