E. Styczen´ et al. / Thermochimica Acta 481 (2009) 46–51
51
TG curve corresponding to the formation of the manganese(II)
Acknowledgement
halide (i.e. the end of either the second or third step). At that
temperature total mass losses are comparable, thus indicating the
validity of the suggested transformations. Small differences can be
due to incomplete degradation of the organic matter (CxHyNz) that
becomes completely combusted only during the next step as evi-
denced by larger calculated and found mass losses corresponding
to the final step. Similar total mass losses of the whole complex
are also indicative of the presence of the suggested solid residues.
In this case, small differences arise from unidentified particular
components of the mixture, i.e. manganese carbide and elemental
manganese in argon and Mn2O3 and Mn3O4 in air. This makes
difficult a precise calculation of the total mass loss.
This research was supported by the Polish State Committee for
Scientific Research under grants DS/8232-4-0088-8 and BW/8000-
5-0454-8.
References
[1] M.L. Schultz, J. Am. Chem. Soc. 71 (1949) 1288–1292.
[2] N.S. Gill, R.S. Nyholm, J. Chem. Soc. (1959) 3997–4007.
[3] N.S. Gill, J. Chem. Soc. (1961) 3512–3515.
[4] F.A. Cotton, D.M.L. Goodgame, M. Goodgame, J. Am. Chem. Soc. 84 (1962)
167–172.
[5] J.H. Clark, T.M. Dunn, J. Chem. Soc. (1963) 1198–1201.
[6] J.R. Wiesner, R.C. Srivastava, C.H.L. Kennard, M. DiVaira, E.C. Lingafelter, Acta
Crystallogr. 23 (1967) 565–574.
[7] D.R. Bloomquist, R.D. Willett, H.W. Dodgen, J. Am. Chem. Soc. 103 (1981)
2610–2615.
4. Conclusions
[8] M. Koman, V. Siroklin, G. Ondrejovicˇ, A.B. Corradi, L.P. Battagila, Acta Crystallogr.
C44 (1988) 813–815.
Bis(tetrabutylammonium) tetrahalogenomanganates(II) under-
go irreversible endothermic phase transformations preceded by
melting. The transformation temperature depends on the kind of
anion. For instance, (Bu4N)2[MnCl4] and (Bu4N)2[MnBr4] undergo
phase transformation at lower temperatures than the mixed-ligand
halogen complexes. In the molten state, the compounds are ther-
mally stable over the range of ca. 100 K and then they undergo
decomposition in either three or four steps depending on the
kind of anion. The volatile products of the decomposition are a
butyl halide and tributylamine. The thermal decomposition of the
(Bu4N)2[MnCl4] and (Bu4N)2[MnBrCl3] complexes affords a stable
Bu3N:MnCl2 adduct at the second step. The remaining compounds
are decomposed at that step to manganese(II) halide.
[9] K. Halvorson, R.D. Willett, Acta Crystallogr. C44 (1988) 2071–2076.
[10] H. Mashiyama, N. Koshiji, Acta Crystallogr. B45 (1989) 467–473.
[11] K. Hasebe, T. Asahi, Acta Crystallogr. C45 (1989) 841–843.
[12] G. Madariaga, F.J. Zúr
u˜ga, W.A. Paciorek, Acta Crystallogr. B46 (1990) 620–628.
[13] I.D. Williams, P.W. Brown, Acta Crystallogr. C48 (1992) 259–263.
[14] T. Kawata, T. Aoyama, S. Ohba, Acta Crystallogr. C49 (1993) 137–139.
[15] I.G. Gusakovskaya, S.I. Pirumowa, N.S. Ovanesyan, N.I. Golovina, R.F. Trofimova,
G.V. Shilov, E.A. Lavrent’eva, Zh. Obshch. Khim. 68 (1998) 1264–1269.
[16] W. Clegg, N.C. Martin, Acta Crystallogr. E63 (2007) m1151.
[17] N.K. Iha, A. Saxena, Inorg. Chim. Acta 26 (1978) 201–205.
[18] D.M. Adams, J. Chatt, J.M. Davidson, J. Gerratt, J. Chem. Soc. (1963) 2189–2194.
[19] F.A. Cotton, R.H. Holm, J. Am. Chem. Soc. 82 (1960) 2983–2986.
[20] R. Fletcher, J.J. Hansen, J. Livermore, R.D. Willett, Inorg. Chem. 22 (1983)
330–334.
[21] Y. Fujii, Z. Wang, R.D. Willett, W. Zhang, C.P. Landee, Inorg. Chem. 34 (1995)
2870–2874.
[22] R.A. Friedman, E.G. Malawer, Y. Wei Wong, B.R. Sundheim, J. Am. Chem. Soc.
102 (1980) 925–931.
The course of the next step, as well as the final product, are
affected by oven atmosphere. Thus, in the inert atmosphere, ele-
mental manganese and its carbide are the final products, whereas
in the oxidative atmosphere a mixture consisting of Mn2O3 and
Mn3O4 is left behind. At this point, it is worth mentioning a dif-
ferent behaviour of (Bu4N)2[MnBrnCl4−n] compounds and those of
(Et4N)2[CuBrnCl4−n] ones. Thus, the final product of the latter is
elemental copper [28], whereas one of the final products of the
manganese(II) complexes, as well as of the cobalt(II) ones [27], are
the corresponding metal carbides. It can thus be concluded that the
kind of the metal in the complex anion has an influence upon the
pathway of thermal degradation of the R2[MBrnCl4−n] compounds,
where R is an alkylammonium cation and M is a metal(II).
[23] M.I. Pollack, B.R. Sundheim, J. Phys. Chem. 78 (1974) 1957–1959.
[24] N. Presser, M.A. Ratner, B.R. Sundheim, Chem. Phys. Lett. 45 (1977) 572.
[25] N. Presser, M.A. Ratner, B.R. Sundheim, Chem. Phys. 31 (1978) 281.
[26] A. Bujewski, K. Grzedzicki, J. Błaz˙ ejowski, Z. Warnke, J. Therm. Anal. Cal. 33
(1988) 961.
[27] E. Styczen´ , Z. Warnke, D. Wyrzykowski, Thermochim. Acta 454 (2007) 84–89.
[28] E. Styczen´ , W.K. Józ´wiak, M. Gazda, D. Wyrzykowski, Z. Warnke, J. Therm. Anal.
Cal. 91 (2008) 979–984.
[29] ICDD PDF-2 Database Release 1998, ISNN 1084-3116.
[30] NIST Mass Spectrometry Data Center Collection (C) 2007, Number 228826.
[31] B.R. Sundheim, E. Levy, B. Howard, J. Chem. Phys. 57 (1972) 4492–4496.
[32] D. Wyrzykowski, T. Maniecki, A. Pattek-Janczyk, J. Stanek, Z. Warnke, Ther-
mochim. Acta 435 (2005) 92–98.
[33] D. Wyrzykowski, T. Maniecki, M. Gazda, E. Styczen´ , Z. Warnke, J. Therm. Anal.
Cal. 90 (2007) 893–897.