Ni nano-TiO2 Composite Electrocoatings
323
ticles incorportation percentage in the “soft” [100] Ni matrix does not consequently
enhance composites’ microhardness.
Ni nano-TiO2 composite coatings exhibited higher microhardness values compared
to pure nickel ones, provided that they exhibit the same preferred orientation and simi-
lar average grain size. The observed dependence of hardness values on the mean grain
size indicated that for ascribing the strengthening effect of composites both grain refine-
ment and dispersion strengthening mechanisms should be taken into account for a given
preferred orientation.
Finally, the application of pulse frequency affected the microhardness and wear
resistance of composites by stimulating microstructural changes in the deposits, ex-
pressed through alterations of crystal growth and corresponding grain size, as well as
by varying the amount of codeposited titania nanoparticles with the nickel matrix.
References
1. B. Wielage, T. Lampke, M. Zacher, and D. Dietrich, Key Eng. Mater. 384 (2008) 283.
2. D. Thiemig and A. Bund, Surf. Coat. Technol. 202 (2008) 2976.
3. X. J. Sun and Z. J. G. Li, Tribol. Lett. 28 (2007) 223.
4. A. Abdel Aal, Mater. Sci. Eng. A 474 (2008) 181.
5. S. Ramalingam, V. S. Muralidharan, A. Subramania, J. Solid State Electrochem. 13 (2009)
1777.
6. B. Ranjith, G. Paruthimal Kalaignan, Appl. Surf. Sci. 257 (2010) 42–47.
7. Q. Li, X. Yang, L. Zhang, J. Wang, and B. Chen, J. Alloys Compd. 482 (2009) 339.
8. S. A. Lajevardi and T. Shahrabi, Appl. Surf. Sci. 256 (2010) 6775.
9. P. Baghery, M. Farzam, A. B. Mousavi, and M. Hosseini, Surf. Coat. Technol. 204 (2010)
3804.
10. W. Chen, Y. He, and W. Gao, J. Electrochem. Soc. 157 (2010) E122.
11. S. Spanou and E. A. Pavlatou, J. Appl. Electrochem. 40 (2010) 1325.
12. N. R. de Tacconi, C. A. Boyles, and K. Rajeshwar, Langmuir 16 (2000) 5665.
13. T. Lampke, B. Wielage, D. Dietrich, and A. Leopold, Appl. Surf. Sci. 253 (2006) 2399.
14. S. Spanou, E. A. Pavlatou, and N. Spyrellis, Electrochim. Acta 54 (2009) 2547.
15. C. S. Lin, C. Y. Lee, C. F. Chang, and C. H. Chang, Surf. Coat. Technol. 200 (2006) 3690.
16. F. Erler, C. Jakob, H. Romanus, L. Spiess, B. Wielage, T. Lampke, and S. Steinhauser, Elec-
trochim. Acta 48 (2003) 3063.
17. J. Amblard, M. Froment, and N. Spyrellis, Surf. Technol. 5 (1977) 205.
18. A. Godon, J. Creus, S. Cohendoz, E. Conforto, X. Feaugas, P. Girault, and C. Savall, Scripta
Mater. 62 (2010) 403.
19. E. A. Pavlatou, M. Raptakis, and N. Spyrellis, Surf. Coat. Technol. 201 (2007) 4571.
20. T. Fritz, M. Griepentrog, W. Mokwa, and U. Schnakenberg, Electrochim. Acta 48 (2003)
3029.
21. P. Gyftou, M. Stroumbouli, E. A. Pavlatou, P. Asimidis, and N. Spyrellis, Electrochim. Acta
50 (2005) 4544.
22. E. A. Pavlatou, M. Stroumbouli, P. Gyftou, and N. Spyrellis, J. Appl. Electrochem. 36 (2006)
385.
23. A. G. McCormack, M. J. Pomeroy, and V. J. Cunnane, J. Electrochem. Soc. 150 (2003) C356.
24. F. Hou, W. Wang, and H. Guo, Appl. Surf. Sci. 252 (2006) 3812.
25. N. Spyrellis, E. A. Pavlatou, S. Spanou, and A. Zoikis-Karathanasis, Trans. Nonferrous Met.
Soc. China 19 (2009) 800.
26. A. F. Zimmerman, G. Palumbo, K. T. Aust, and U. Erb, Mater. Sci. Eng. A 328 (2002) 137.
27. A. Jung, Z. H. Natter, Z. R. Hempelmann, and E. Lach, J. Mater. Sci. 44 (2009) 2725.
28. A. M. El-Sherik, U. Erb, G. Palumbo, and K. T. Aust, Scr. Metall. Mater. 27 (1992) 1185.
Brought to you by | University of Florida
Authenticated
Download Date | 9/29/15 7:02 PM