Paper
RSC Advances
12 S. Dang, J.-H. Zhang and Z.-M. Sun, J. Mater. Chem., 2012, 22,
8868–8873.
4. Conclusions
13 P. Malakar, D. Modak and E. Prasad, Chem. Commun., 2016,
52, 4309–4312.
14 Q.-Y. Yang and J.-M. Lehn, Angew. Chem., Int. Ed., 2014, 53,
4572–4577.
15 H. Li, Z. Kang, Y. Liu and S.-T. Lee, J. Mater. Chem., 2012, 22,
24230–24253.
16 J. Joseph and A. A. Anappara, J. Lumin., 2016, 178, 128–133.
17 J. Joseph and A. A. Anappara, ChemPhysChem, 2017, 18, 292–
298.
18 R. Nishiyabu, Y. Sugino and Y. Kubo, Chem. Commun., 2013,
49, 9869–9871.
19 F. d. J. Trindade, E. R. Triboni, B. Castanheira and
S. Brochsztain, J. Phys. Chem. C, 2015, 119, 26989–26998.
20 S. Mandani, B. Sharma, D. Dey and T. K. Sarma, RSC Adv.,
2016, 6, 84599–84603.
In summary, we have designed a simple solution based
approach for generation of WLEM. As generated WLEM can be
converted to solid, gel or in the form of lm, making it a suit-
able candidate for solid state devices. Furthermore, this system
was found to be showing fast, sensitive and selective sensing of
Hg2+ ions and thiol containing amino acid Cys. The reversible
thermo-response property of WLEM could be utilized in optical
thermometry and thermography applications. Such biofriendly
white light emitting material holds promise for being used in
selective sensing of a wide range of chemical or biological
species based on their specic chemical interaction with the
individual components present in the WLEM and also in bio-
imaging.
Conflicts of interest
21 N. O'Farrell, A. Houlton and B. R. Horrocks, Int. J. Nanomed.,
2006, 1, 451–472.
There are no conicts to declare.
`
22 L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo and
F. Priolo, Nature, 2000, 408, 440.
23 Y. He, S. Su, T. Xu, Y. Zhong, J. A. Zapien, J. Li, C. Fan and
S.-T. Lee, Nano Today, 2011, 6, 122–130.
24 Y. Zhong, F. Peng, X. Wei, Y. Zhou, J. Wang, X. Jiang, Y. Su,
S. Su, S.-T. Lee and Y. He, Angew. Chem., Int. Ed., 2012, 51,
8485–8489.
25 Z. Kang, Y. Liu and S.-T. Lee, Nanoscale, 2011, 3, 777–791.
26 X. Cheng, S. B. Lowe, P. J. Reece and J. J. Gooding, Chem. Soc.
Rev., 2014, 43, 2680–2700.
27 Y. Su, X. Wei, F. Peng, Y. Zhong, Y. Lu, S. Su, T. Xu, S.-T. Lee
and Y. He, Nano Lett., 2012, 12, 1845–1850.
Acknowledgements
T. S. is thankful to Department of Science and Technology (DST)
(SERB Project-ECR/2016/000436) for nancial support. B. S. and
S. T. acknowledge INST for Postdoctoral and Senior Research
Fellowships, respectively. V. K. is thankful to DST-SERB project
for providing Junior Research Fellowship. T. S. acknowledges
Advanced Instrumentation Research Facility (AIRF), Jawaharlal
Nehru University (JNU), New Delhi for providing access to the
TEM facility and Gajender Saini for technical help.
28 Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su,
S.-T. Lee and Y. He, J. Am. Chem. Soc., 2013, 135, 8350–8356.
29 J. Wang, D.-X. Ye, G.-H. Liang, J. Chang, J.-L. Kong and
J.-Y. Chen, J. Mater. Chem. B, 2014, 2, 4338–4345.
30 B. Sharma, S. Tanwar and T. Sen, ACS Sustainable Chem.
Eng., 2019, 7, 3309–3318.
31 Y. Zhong, X. Sun, S. Wang, F. Peng, F. Bao, Y. Su, Y. Li,
S.-T. Lee and Y. He, ACS Nano, 2015, 9, 5958–5967.
32 R. Ban, F. Zheng and J. Zhang, Anal. Methods, 2015, 7, 1732–
1737.
References
1 J. Karpiuk, E. Karolak and J. Nowacki, Phys. Chem. Chem.
Phys., 2010, 12, 8804–8809.
2 N. Guo, Y. Huang, M. Yang, Y. Song, Y. Zheng and H. You,
Phys. Chem. Chem. Phys., 2011, 13, 15077–15082.
3 S. Pimputkar, J. S. Speck, S. P. DenBaars and S. Nakamura,
Nat. Photonics, 2009, 3, 180.
4 E. F. Schubert and J. K. Kim, Science, 2005, 308, 1274–1278.
5 N. C. George, K. A. Denault and R. Seshadri, Annu. Rev. Mater. 33 K.-Y. Cheng, R. Anthony, U. R. Kortshagen and R. J. Holmes,
Res., 2013, 43, 481–501.
Nano Lett., 2011, 11, 1952–1956.
6 H. Wu, L. Ying, W. Yang and Y. Cao, Chem. Soc. Rev., 2009, 34 M. L. Mastronardi, E. J. Henderson, D. P. Puzzo, Y. Chang,
38, 3391–3400.
Z. B. Wang, M. G. Helander, J. Jeong, N. P. Kherani, Z. Lu
7 W. Xie, S.-R. Zhang, D.-Y. Du, J.-S. Qin, S.-J. Bao, J. Li,
and G. A. Ozin, Small, 2012, 8, 3647–3654.
Z.-M. Su, W.-W. He, Q. Fu and Y.-Q. Lan, Inorg. Chem., 35 F. Maier-Flaig, J. Rinck, M. Stephan, T. Bocksrocker,
¨
2015, 54, 3290–3296.
M. Bruns, C. Kubel, A. K. Powell, G. A. Ozin and
8 Q.-Y. Yang, K. Wu, J.-J. Jiang, C.-W. Hsu, M. Pan, J.-M. Lehn
and C.-Y. Su, Chem. Commun., 2014, 50, 7702–7704.
U. Lemmer, Nano Lett., 2013, 13, 475–480.
36 S. Bose, M. A. Ganayee, B. Mondal, A. Baidya, S. Chennu,
J. S. Mohanty and T. Pradeep, ACS Sustainable Chem. Eng.,
2018, 6, 6203–6210.
¨
9 S. K. Panda, S. G. Hickey, H. V. Demir and A. Eychmuller,
Angew. Chem., Int. Ed., 2011, 50, 4432–4436.
¨
10 M. J. Bowers, J. R. McBride and S. J. Rosenthal, J. Am. Chem. 37 C.-C. Tu, J. H. Hoo, K. F. Bohringer, L. Y. Lin and G. Cao, Opt.
Soc., 2005, 127, 15378–15379. Express, 2014, 22, A276–A281.
11 Y. Ledemi, A.-A. Trudel, V. A. G. Rivera, S. Chenu, E. Veron, 38 B. Ghosh, Y. Masuda, Y. Wakayama, Y. Imanaka, J.-i. Inoue,
L. A. Nunes, M. Allix and Y. Messaddeq, J. Mater. Chem. C,
2014, 2, 5046–5056.
K. Hashi, K. Deguchi, H. Yamada, Y. Sakka, S. Ohki,
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 15997–16006 | 16005