Metallic Nanoparticles from Reduction of Ag(I)
J. Phys. Chem. B, Vol. 106, No. 10, 2002 2487
(7) Hirai H. J. Macromol. Sci., Chem. 1979, A13, 633. (d) Hirai, H.;
Nakao Y.; and Toshima, N. J. Macromol. Sci., Chem. 1979, A13, 727.
(8) Vasan, H. N.; Rao, C. N. R. J. Mater. Chem. 1995, 5, 1755.
(9) Ayyappan, S.; Srinivasan Gopalan, R.; Subbana, G. N.; Rao, C.
N. R. J. Mater. Res. 1997, 12, 2, 398.
(10) Pastoriza-Santos, I.; Liz-Marzan, L. M. Langmuir 1999, 15, 948.
(11) Steiner, E. C.; Gilbert, J. M. J. Am. Chem. Soc. 1965, 87, 382.
(12) Parker, A. J. In AdVances in Organic Chemistry; Raphael, R. A.,
Taylor, E. C., Wynnberg, H., Eds.; Wiley Interscience: New York, 1965;
Vol. 5, pp 1-46.
(13) Hoyle, J. Oxidation of Sulphoxides and Sulphones. In The Chemistry
of Sulphones and Sulphoxides; Patai, S., Rappoport, Z., Stirling, C., Eds.;
Wiley: New York, 1988; p 969.
(14) D´ıaz D.; Rivera M.; Tong Ni; Rodr´ıguez J. C.; Castillo-Blum S.
E.; Nagesha D.; Robles J.; Alvarez-Fregoso O. J.; Kotov N. A. J. Phys.
Chem. B 1999, 103, 9854.
plasmon resonance band decreases with each NO addition; the
area under the curve diminishes proportionally to NO additions.
After six additions of NO, the spectrum is similar to that of
NO in DMSO as a consequence of an excess of the dissolved
gas (for comparison purposes, the spectrum of NO in DMSO
was inserted in the upper part of Figure 7).
The colloid is not regenerated upon heating the dispersion
used in this experiment. Under our reaction conditions, it was
not possible to determine the NO and silver stoichiometric
coefficients exactly because the NO concentration was not
accurately known. We are certain that there is a reaction between
NO and Ag NPs, where the reduction of NO takes place;
therefore, the products are most probably N2O or N2, as
previously reported in studies of NO dissociation over metallic
silver.42
(15) Hill, J. Colloidal SilVer. A Literature ReView. Medical Uses,
Toxicology & Manufacture, 2nd ed.; Clear Springs Press: Rainier, WA,
2000.
(16) Thurman, R. B.; Gerba, C. P. The molecular mechanisms of copper
and silver ion disinfection of bacteria and viruses. In CRC Critical ReViews
in EnVironmental Control; CRC Press: Boca Raton FL, 1989; Vol. 18, p
295.
(17) Deitch, E. A.; Marino, A. A.; Gillespie, T. E.; Albright, J. A.
Antimicrob. Agents Chemother. 1983, 23, 356.
(18) Santos, L.; Tipping, P. G. Inmunol. Cell Biol. 1994, 72, 406.
(19) PC-Spartan Plus, version 1.5.2; Wavefuntion Inc.: Irvine, CA,
1998.
(20) Bruce King, R. Encyclopedia of Inorganic Chemistry; Wiley: New
York, 1994; Vol. 5, p 2533.
(21) Kissinger, P. T.; Heineman, W. R. Laboratory Techniques in
Electroanalytical Chemistry; Marcel Dekker Inc.: New York, 1984; p 377.
(22) Antelman, M. S. Encyclopedia of Chemical Electrode Potentials;
Plenum Press: New York, 1982; p 250.
(23) Rivas, L.; Sanchez-Cortes, S.; Garc´ıa-Ramos, J. V. Morcillo, G.
Langmuir 2001, 17, 574.
(24) Cotton, F. A.; Wilkinson, G. AdVance Inorganic Chemistry, 4th
ed.; Wiley: New York, 1980; p 968.
(25) Elding, L. I. A Celebration of Inorganic Lives: An Interview with
Sten Ahrland (Lund University, Sweden). Coord. Chem. ReV. 1996, 153,
1.
(26) Calligaris, M.; Carugo, O. Coord. Chem. ReV. 1996, 153, 83.
(27) Sreekumar, T. K.; Janardhanan, S.; Kalidas, C. Ber. Bunsen-Ges.
Phys. Chem. 1991, 95, 9.
Conclusions
A new and reproducible method for the synthesis of silver
nanoparticles is reported in this work. Very stable capped silver
nanoparticles with average diameter close to 4.4 nm and narrow
size distribution are prepared by addition of silver 2-ethylhex-
anoate to DMSO in the presence of trisodium citrate as a
stabilizer. Probably DMSO and citrate ions act as simultaneous
reducers of this silver salt. Our experimental and theoretical
results suggest that, in these colloidal DMSO dispersions, the
silver reduction takes place through a precursor species such
as [Ag(DMSO)ethex]. High concentration of defects, such as
stacking faults and twins, and citrate species interacting in
nanoparticles surface would be responsible for the modification
in the optical response of silver nanoparticles by enhancing
damping during plasmon resonance, thus overenlarging the
width of electronic absorption spectra.
UV-visible spectra show that silver nanoparticles in DMSO
react with NO, thus causing the dissolution of metal when the
dispersion is dry. Therefore, we have found a novel, simple,
and inexpensive chemical model system to study the interaction
of NO with metallic silver under anhydrous, anaerobic, and
room-temperature conditions. Ongoing research is concerned
with the reduction of different silver salts in DMSO, in the
presence of different solid supports.
(28) Jensen, W. B. The Lewis Acid-Base Concepts. An oVerView;
Wiley: New York, 1980; p 214.
(29) Atkins, P. W. Quanta. A Handbook of Concepts; Clarendon Press:
Oxford, U.K., 1974; p 186.
(30) Henglein, A.; Giersig, M. J. Phys. Chem. B 1999, 103, 9533.
(31) van Hyning, D. L.; Zukoski, C. F. Langmuir 1998, 14, 7034.
(32) Johnson, P. B.; Christy, R. W. Phys. ReV. B 1972, 6, 4370.
(33) Miller, A. MieTab version 6.38 for Windows, 1998.
(34) van de Hulst, H. C. Light Scattering by Small Particles; Dover
Publications: New York, 1981; Part II, Chapter 9.
(35) Note: Mietab Software provides extinction coefficient; therefore,
to obtain absorbance values, classical Lambert-Beer law was applied using
a total concentration N ) 7.8 × 1011 part./cm3, calculated by assuming
spheres of diameter equal to the particle size and taking into account partial
contribution of each diameter from Figure 6.
(36) Charle´, K. P.; Schulze, W. Ber. Bunsen-Ges. Phys. Chem. 1984,
88, 350.
(37) Taleb, A.; Petit, C.; Pileni, M. P. J. Phys. Chem. B 1998, 102,
2214.
(38) CRC Handbook of Chemistry and Physics, 75th ed.; CRC Press:
Acknowledgment. The authors thank the DGAPA-UNAM
for financial support through projects IN-100398 and IN-107700.
G.R.-G. thanks the DGEP-UNAM for a scholarship. The authors
express their gratefulness to Drs. A. R. Va´zquez-Olmos, E.
Zeller, J. Robles-Garc´ıa, and S. E. Castillo-Blum for their
revision and suggestions to this work. Also, we want to thank
to Mr. L.-A. Ortiz-Frade for his help in the experimental part.
References and Notes
Boca Raton, FL, 1995; p 3-207.
(1) Lee, P. C.; Miesel, D. J. Phys. Chem. 1982, 86, 3391.
(2) Creigton, J.; Blatchford, C.; Albrecht, M. J. Chem. Soc., Faraday
Trans. 1979, 75, 790.
(3) Shirtcliffe, N.; Nickel, U.; Schneider, S. J. Colloid Interface Sci.
1999, 211, 122.
(4) Toshima, N.; Harada, M.; Yonezawa, T.; Kushihashi, K.; Asakura,
K. J. Phys. Chem. 1991, 95, 7448.
(39) Wang, W.; Chen, X.; Efrima, S. J. Phys. Chem. B 1999, 103, 7238.
(40) Gutie´rrez, M.; Henglein, A. J. Phys. Chem. 1993, 97, 11368.
(41) Ludviksson, A.; Huang, C.; Ja¨nsch, H. J.; Martin, R. M. Surf. Sci.
1993, 284, 328.
(42) Carley, A. F.; Davies, P. R.; Roberts, M. W.; Santra, A. K.; Thomas,
K. K. Surf. Sci. 1998, 406, L587.
(43) Citra, A.; Andrews, L. J. Phys. Chem. A 2001, 105, 3042.
(44) Keshavaraja, A.; She, X.; Flytzany-Stephanopoulos, M. Appl. Catal.,
B 2000, 27, L1.
(5) Toshima, N.; Harada, M.; Yamazaki, Y.; Asakura, K. J. Phys.
Chem. 1992, 96, 9927.
(6) Toshima, N.; Yonezawa, T.; Kushihashi, K. J. Chem. Soc., Faraday
Trans. 1993, 89, 2537.
(45) Henglein, A. J. Phys. Chem. B 1999, 103, 9302.