2328
Appl. Phys. Lett., Vol. 82, No. 14, 7 April 2003
Rack et al.
events has been performed, however, elastic scattering angles
are too large to account for the observed broadening. Inelas-
occurring, as most inelastic cross sections are strong func-
tions of energy and decrease with increasing electron energy.
Ϫ3
Ϫ5
tic scattering events with scattering angles of 10 –10 rad
most likely caused the beam broadening that lead to the etch
profile observed. The elastic scattering Monte Carlo simula-
tion is being modified to include small angle inelastic scat-
tering events to better quantify the spatial distribution of
electron flux at the substrate surface.
1
Y. Darici, P. H. Holloway, J. Sebastian, T. Trottier, S. Jones, and J. Ro-
driquez, J. Vac. Sci. Technol. A 17, 692 ͑1999͒.
R. R. Kunz and T. M. Mayer, J. Vac. Sci. Technol. B 6, 1557 ͑1988͒.
K. L. Lee and M. Hatzakis, J. Vac. Sci. Technol. 7, 1941 ͑1989͒.
I. Utke, P. Hoffmann, B. Dwir, K. Leifer, E. Kapon, and P. Doppelt, J. Vac.
2
3
4
Sci. Technol. B 18, 3168 ͑2000͒.
A. Folch, J. Tejada, C. H. Peters, and M. S. Wrighton, Appl. Phys. Lett.
5
A series of experiments were performed to elucidate the
effect of incident beam energy on etch rate and damage ge-
ometry. In this instance, the electron beam was scanning dur-
ing etching over a 0.25 mϫ0.25 m square region and the
beam current used was ϳ1 nA. Figure 4͑a͒ shows a plot of
the silicon etch volume/Coulomb dose as a function of beam
66, 2080 ͑1995͒.
6
R. R. Kunz, T. E. Allen, and T. M. Mayer, J. Vac. Sci. Technol. B 5, 1427
͑
1987͒.
7
8
9
R. R. Kunz and T. M. Mayer, Appl. Phys. Lett. 50, 962 ͑1987͒.
S. Matsui and M. Mito, Appl. Phys. Lett. 53, 1492 ͑1988͒.
S. Lipp, L. Frey, C. Lehrer, B. Frank, E. Demm, S. Pauthner, and H.
Ryssel, J. Vac. Sci. Technol. B 14, 3920 ͑1996͒.
T. J. Stark, T. M. Mayer, D. P. Griffis, and P. E. Russel, J. Vac. Sci.
Technol. B 10, 2685 ͑1992͒.
10
energy with the associated linear regression fit of the data
2
(
R ϭ95%), which shows a linear trend of increased etch
11
O. Yavas, C. Ochiai, M. Takai, A. Hosono, and S. Okuda, Appl. Phys. Lett.
76, 3319 ͑2000͒.
rates at lower beam energies. This trend is indicative of the
expected increase in the inelastic dissociation and ionization
at lower beam energies. However, it is not conclusive
whether the primary electrons or the secondary electrons are
the dominant contributor to XeF2 dissociation. Several
groups have observed higher electron-stimulated deposition
rates at lower energy and have suggested that the rate in-
crease is due to a higher secondary electron yield at lower
energy. An integration of the secondary electron energy dis-
tribution from silicon at 3 keV ͑with a total yield of ␦
12
M. Takai, T. Kishimoto, H. Morimoto, Y. K. Park, S. Lipp, C. Lehrer, L.
Frey, H. Ryssel, A. Hosono, and S. Kawabuchi, Microelectron. Eng. 41Õ
42, 453 ͑1998͒.
13
P. C. Hoyle, J. R. A. Cleaver, and H. Ahmed, Appl. Phys. Lett. 64, 1448
͑1994͒.
H. W. P. Koops, R. Weiel, D. P. Kern, and T. H. Baum, J. Vac. Sci.
Technol. B 6, 477 ͑1988͒.
14
15
P. C. Hoyle, J. R. A. Cleaver, and H. Ahmed, J. Vac. Sci. Technol. B 14,
662 ͑1996͒.
1
1
6
7
K. T. Kohlmann-von Platen, J. Chiebek, M. Weiss, K. Reimer, H. Oertel,
and W. H. Brunger, J. Vac. Sci. Technol. B 11, 2219 ͑1993͒.
R. B. Jackson and J. S. Foord, Appl. Phys. Lett. 49, 196 ͑1986͒.
M. Komuro and H. Hiroshima, Microelectron. Eng. 35, 273 ͑1997͒.
N. A. Kislov, I. I. Khodos, E. D. Ivanov, and J. Barthel, Scanning 18, 114
͑1996͒.
ϭ0.37) and an ionization cross section of SF reveals that
18
6
1
2
9
0
the ratio of ionization events caused by the primary beam
relative to the secondary electrons is ϳ2.5/1. A more-
detailed analysis including dissociation reactions is needed to
fully account for the all of the species ͑ions and radicals͒ that
are participating in the etching reaction. Figure 4͑b͒ is a plot
of the etched feature diameter and the associated linear re-
K. T. Kohlmann, M. Thiemann, and W. H. Brunger, Microelectron. Eng.
13, 279 ͑1991͒.
21
S. Matsui and K. Mori, J. Vac. Sci. Technol. B 4, 299 ͑1986͒.
K. T. Kohlmann-von Platen and W. H. Brunger, J. Vac. Sci. Technol. B 14,
22
4262 ͑1996͒.
23
2
S. Matsui, T. Ichihashi, and M. Mito, J. Vac. Sci. Technol. 7, 1182 ͑1989͒;
R. R. Kunz and T. M. Mayer, J. Vac. Sci. Technol. B 5, 427 ͑1987͒.
J. W. Coburn and H. F. Winters, J. Appl. Phys. 50, 3189 ͑1979͒.
P. E. Russell ͑private communications͒.
gression fit of the data (R ϭ98%) and reveals that the ef-
fective spot size increased with decreasing beam energy. This
trend agrees with speculation that inelastic gas scattering is
24
25
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
55.33.16.124 On: Sat, 29 Nov 2014 13:19:45
1