TUNGSTEN CARBIDES AND W–C PHASE DIAGRAM
127
and that the two consecutive phase transformations
occur at different compositions.
6. Rudy, E., Compendium of Phase Diagram Data. Ternary
Phase Equilibria in Transition Metal–Boron–Carbon–
Silicon Systems, Report AFML TR-65-2, Wright–Patter-
son Air Force Base (Ohio), 1969.
Figure 6 shows the W–C phase diagram which takes
into account the temperature stability range of the cubic
carbide WC , the experimental data reported in [5–8,
7
. Rudy, E. and Hoffman, J.R., Phasengleichgewichte im
Bereich der kubischen Karbidphase im System Wol-
fram–Kohlenstoff, Planseeber. Pulvermetall., 1967,
vol. 15, no. 3, pp. 174–178.
1
.0
1
5–20], and the present results. Table 1 summarizes
structural data for the phases of the W–C system. Near
the composition WC1.0 (Fig. 6), reducing the tempera-
ture from 3058 to 2993 K leads first to the peritectic for-
mation of the cubic tungsten carbide, L + C ⇔
γ-WC , and then to the cubic–hexagonal phase trans-
8
9
. Sara, R.V., Phase Equilibrium in the System Tungsten–
Carbon, J. Am. Ceram. Soc., 1965, vol. 48, no. 5,
pp. 251–257.
1
− x
. Rempel, A.A., Würschum, R., and Schaefer, H.-E.,
Atomic Defects in Hexagonal Tungsten Carbide Studied
by PositronAnnihilation, Phys. Rev. B: Condens. Matter,
2000, vol. 61, no. 9, pp. 5945–5948.
formation, γ-WC1 – x
eutectoid decomposition γ-WC1 – x
(
⇔
δ-WC. The temperature of the
δ-WC + C
2993 K) was inferred from the DTA data reported by
Rudy and Hoffman [7] for a carbide sample containing
1 at % C. It is clear from Fig. 6 that, even though the
⇔
1
1
0. Klemm, W. and Schüth, W., Magnetochemische Unter-
suchungen: 3. Über den Magnetismus einiger Carbide
und Nitride, Z. Anorg. Allg. Chem., 1931, vol. 201, no. 1,
pp. 24–31.
5
temperature stability range of γ-WC1 – x is rather nar-
row, the stoichiometric cubic carbide WC1.0 can be liq-
uid-quenched. This correlates with the results reported
by Willens et al. [18, 19]. The phase diagram in Fig. 6
provides a consistent picture of phase equilibria in the
W–C system, which agrees with earlier reports. The
special points in the phase diagram of the W–C system
1. Lander, J.J. and Germer, L.H., Plating Molybdenum,
Tungsten, and Chromium by Thermal Decomposition of
Their Carbonyls, Trans. AIME, 1948, vol. 175,
pp. 661−691.
1
1
1
1
2. Lautz, G. and Schneider, D., Über die Supraleitung in
(Fig. 6) at T > 1300 K are listed in Table 2.
den Wolframkarbiden W C und WC, Z. Naturforsch., A,
2
1
961, vol. 16, no. 12, pp. 1368–1372.
Note that the structural data for tungsten carbides
especially for those expected to be ordered-vacancy
(
3. Parthe, E. and Sadagopan, V., The Structure of Dimolyb-
denum Carbide by Neutron Diffraction Technique, Acta
Crystallogr., 1963, vol. 16, no. 3, pp. 202–205.
compounds) are only tentative. To refine the structure
of nonstoichiometric tungsten carbides to the point of
determining the positions of carbon atoms and vacan-
cies, neutron or synchrotron x-ray diffraction studies
are needed.
4. Butorina, L.N. and Pinsker, Z.G., Electron Diffraction
Study of W C, Kristallografiya, 1960, vol. 5, no. 4,
2
pp. 585–588.
5. Rudy, E., Windisch, S., and Hoffman, J.R., W–C Sys-
tem: Supplemental Information on the Mo–C System.
Ternary Phase Equilibria in Transition Metal–Boron–
Carbon–Silicon Systems (Part I. Related Binary Sys-
tems, vol. VI), Report AFML-TR-65-2, Wright–Patter-
son Air Force Base (Ohio), 1966, pp. 1–50.
ACKNOWLEDGMENTS
This work was supported by the Russian Foundation
for Basic Research, project no. 06-03-32047.
1
1
1
6. Goldschmidt, H.J. and Brand, J.A., The Tungsten-Rich
Region of the System Tungsten–Carbon, J. Less-Com-
mon Met., 1963, vol. 5, no. 2, pp. 181–194.
REFERENCES
1
2
. Gusev, A.I. and Rempel, A.A., Nestekhiometriya,
besporyadok i poryadok v tverdom tele (Nonstoichiome-
try, Disorder, and Order in Solids), Yekaterinburg: Ural.
Otd. Ross. Akad. Nauk, 2001.
7. Ronsheim, P., Toth, L.E., Mazza, A., et al., Direct Cur-
rent Arc-Plasma Synthesis of Tungsten Carbides, J.
Mater. Sci., 1981, vol. 16, no. 10, pp. 2665–2674.
8. Willens, R.H. and Buehler, E., The Superconductivity of
the Monocarbides of Tungsten and Molybdenum, Appl.
Phys. Lett., 1965, vol. 7, no. 1, pp. 25–26.
. Gusev, A.I., Rempel, A.A., and Magerl, A.J., Disorder
and Order in Strongly Nonstoichiometric Compounds:
Transition Metal Carbides, Nitrides, and Oxides, Berlin:
Springer, 2001.
19. Willens, R.H., Buehler, E., and Matthias, B.T., Super-
conductivity of the Transition-Metal Carbides, Phys.
Rev., 1967, vol. 159, no. 2, pp. 327–330.
3
4
5
. Storms, E.K., The Refractory Carbides, NewYork: Aca-
demic, 1967. Translated under the title Tugoplavkie kar-
bidy, Moscow: Atomizdat, 1970.
20. Krainer, E. and Robitsch, J., Röntgenographischer Nach-
weis des kubischen Wolframkarbides in funkenerosiv
bearbeiteten Hartmetallen und in reinen Wolfram-
schmelkarbiden, Planseeber. Pulvermetall., 1967,
vol. 15, no. 1, pp. 46–56.
. Moissan, H., Préparation au four électrique de quelques
métaux réfractaires: tungstène, molybdène, vanadium,
Compt. Rend., 1893, vol. 116, pp. 1225–1227.
. Rudy, E. and Windisch, S., Evidence to Zeta Fe N-Type
2
21. Krainer, E. and Robitsch, J., Zur Frage des kubischen
Wolframkarbids, Planseeber. Pulvermetall., 1967,
vol. 15, no. 3, pp. 179–180.
Sublattice Order in W C at Intermediate Temperatures,
2
J. Am. Ceram. Soc., 1967, vol. 50, no. 5, pp. 272–273.
INORGANIC MATERIALS Vol. 42 No. 2 2006