183101-3
Oznuluer et al.
Appl. Phys. Lett. 98, 183101 ͑2011͒
FIG. 3. ͑Color online͒ The micro-Raman mapping images of ͑a͒ the Lorent-
zian width of the 2D peak and ͑b͒ intensity ratio ͑I2D /IG͒ of 2D and G peaks
of the graphene on SiO2 layer. The Lorentzian widths are obtained by fitting
the spectrum for each point. The scale bars are 5 m. Histogram of ͑c͒ the
Lorentzian width of the 2D peak and ͑d͒ the intensity ratio ͑I2D /IG͒.
the device is around Ϫ20 V which is likely because of the
trapped charges on the dielectric layer or unintentional dop-
ing during the fabrication process. The on-off ratio of the
device is around 2. The calculated field effect mobility of the
device is around 20 cm2/V s. The output characteristics are
given in Fig. 4͑d͒. The modulation of the channel conductiv-
ity is clearly seen from the graph.
The Raman spectra together with the transport measure-
ments provide solid evidence that gold surface can be used
as a substrate for graphene. Graphene growth on metal sub-
strates shows different growth mechanism depending on the
solubility of carbon in the metal. Two different growth
mechanisms have been proposed for nickel and copper sub-
strate. Very recently, using sequentially introduced isotopic
carbon, Li et al.23 demonstrated that the growth mechanism
on nickel is based on diffusion and precipitation, however,
the growth mechanism on copper is based on surface adsorp-
tion. Maximum solubility values of carbon in nickel, copper,
and gold are 2.7%, 0.04%, and 0.06%, respectively.24 The
solubility in gold is slightly more than copper and much less
than nickel. Based on these solubility values and the ob-
served minor effect of cooling rates, we speculate that the
growth mechanism of graphene on gold surface could be
similar with copper.
In summary we have reported the synthesis of graphene
layers on gold surface using CVD technique. The Raman
spectra of the samples reveal the essential feature of the
graphene grown on gold. The back-gated FETs that use the
transferred graphene layers as an effective semiconductor are
fabricated and characterized. Further surface characterization
experiments are needed to understand the growth mechanism
and the nature of the interaction between the gold and
graphene. We believe that, gold surface coated with graphene
layer could provide a unique configuration for various new
applications ranging from surface plasmon resonance sensors
to electrochemical analysis.
FIG. 4. ͑Color online͒ ͑a͒ Schematic representation of the back-gated
graphene FETs. ͑b͒ Raman intensity map of 2D peak from the graphene
layer bridging the source and drain electrodes. ͑c͒ Transfer and ͑d͒ output
characteristics the transistor with a channel width of 100 m and a channel
length of 8 m.
1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 ͑2004͒.
2A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K.
3X. S. Li, W. W. Cai, J. H. An, S. Kim, J. Nah, D. X. Yang, R. Piner, A.
Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S.
4Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu,
A. Grill, and P. Avouris, Science 327, 662 ͑2010͒.
6N. Liu, L. Fu, B. Dai, K. Yan, X. Liu, R. Zhao, Y. Zhang, and Z. Liu,
7Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, and J. M. Tour, Nature ͑London͒
468, 549 ͑2010͒.
183103 ͑2010͒.
9A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus,
10L. Gao, J. R. Guest, and N. P. Guisinger, Nano Lett. 10, 3512 ͑2010͒.
11J. Coraux, A. T. N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F.
Heringdorf, R. van Gastei, B. Poelsema, and T. Michely, New J. Phys. 11,
039801 ͑2009͒.
13J. Wintterlin and M. L. Bocquet, Surf. Sci. 603, 1841 ͑2009͒.
14M. Treier, P. Ruffieux, R. Schillinger, T. Greber, K. Mullen, and R. Fasel,
15C. S. Shan, H. F. Yang, J. F. Song, D. X. Han, A. Ivaska, and L. Niu, Anal.
16Y. Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. H. Lin, Elec-
17L. Wu, H. S. Chu, W. S. Koh, and E. P. Li, Opt. Express 18, 14395 ͑2010͒.
19S. Bhaviripudi, E. Mile, S. A. Steiner, A. T. Zare, M. S. Dresselhaus, A.
20D. N. Yuan, L. Ding, H. B. Chu, Y. Y. Feng, T. P. McNicholas, and J. Liu,
22V. L. De Los Santos, D. Lee, J. Seo, F. L. Leon, D. A. Bustamante, S.
Suzuki, Y. Majima, T. Mitrelias, A. Ionescu, and C. H. W. Barnes, Surf.
This work was supported by the Scientific and Techno-
logical Research Council of Turkey ͑TUBITAK͒ Grant No.
109T259 and Marie Curie International Reintegration Grant
͑IRG͒ Grant No. 256458.
23X. Li, W. Cai, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4268 ͑2009͒.
24H. Okamoto and T. Massalski, J. Phase Equilibria 5, 378 ͑1984͒.
130.49.57.18 On: Thu, 11 Dec 2014 18:58:54