5672
V. Protsenko, F. Danilov / Electrochimica Acta 54 (2009) 5666–5672
(2) The kinetics and mechanism of chromium deposition from
oxalate and formate baths proved to be different. In case of
formate electrolyte, the metal chromium deposits probably via
the discharge of electroactive hydroxocomplexes of bivalent
chromium which are formed in the near-cathode layer due to
the dissociation of inner-sphere-coordinated water molecules.
In case of oxalate electrolyte, the formation of a significant
amount of the hydroxocomplexes is questionable. Therefore,
the reaction of chromium deposition from oxalate bath is
assumed to proceed with the participation of oxalate complexes
of Cr(II). The reaction schemes proposed agree well with the
experimental data obtained.
[10] J. McDougall, M. El-Sharif, S. Ma, J. Appl. Electrochem. 28 (1998) 929.
[11] J. Szynkarczuk, I. Drela, J. Kubicki, Electrochim. Acta 34 (1989) 399.
[12] A.A. Edigaryan, Yu.M. Polukarov, Zashch. Met. 32 (1996) 504.
[13] A.A. Edigaryan, Yu.M. Polukarov, Zashch. Met. 34 (1998) 117.
[14] F.I. Danilov, V.S. Protsenko, Zashch. Met. 37 (2001) 251.
[15] L.N. Vykhodtseva, A.A. Edigaryan, E.N. Lubnin, Yu.M. Polukarov, V.A. Safonov,
Elektrokhimiya 40 (2004) 435.
[16] G. Hong, K.S. Siow, G. Zhiqiang, A.K. Hsieh, Plat. Surf. Finish 88 (2001) 69.
[17] Z. Zeng, Y. Sun, J. Zhang, Electrochem. Commun. 11 (2009) 331.
[18] V.N. Korshunov, V.A. Safonov, L.N. Vykhodtseva, Elektrokhimiya 44 (2008) 275.
[19] I.M. Kolthoff, J.J. Lingane, Polarography, Interscience, New York, 1941.
[20] A.V. Pamfilov, A.I. Lopushanska, A.M. Balter, J. Phys. Chem. USSR 36 (1962) 2481.
[21] A.V. Pamfilov, A.I. Lopushanska, A.M. Balter, J. Phys. Chem. USSR 37 (1963) 615.
[22] A.V. Pamfilov, A.I. Lopushanska, S.A. Pohmelkina, Elektrokhimiya 4 (1968) 780.
[23] F.I. Danilov, A.B. Velichenko, S.M. Loboda, S.E. Kalinovskaya, Elektrokhimiya 23
(1987) 988.
(3) The partial polarization curves of chromium electrodeposition
exhibit a current peak. A decrease in the partial current density
may be caused by blocking the electrode surface with poorly
soluble hydroxide compounds of Cr(III).
[24] Yu.M. Polukarov, V.A. Safonov, A.A. Edigaryan, L.N. Vyhodtseva, Zashch. Met. 37
(2001) 499.
[25] S.C. Kwon, M. Kim, S.U. Park, D.Y. Kim, D. Kim, K.S. Nam, Y. Choi, Surf. Coat.
Technol. 183 (2004) 151.
[26] V.A. Safonov, L.N. Vykhodtseva, Yu.M. Polukarov, O.V. Safonova, G. Smolentsev,
M. Sikora, S.G. Eeckhout, P. Glatzel, J. Phys. Chem. B 110 (2006) 23192.
[27] I. Drela, J. Szynkarczuk, J. Kubicki, Electrochim. Acta 33 (1988) 589.
[28] V.V. Losev, Itogi Nauki Tekh., Ser.: Elektrokhimiya (VINITI, Moscow) 6 (1971) 65.
[29] A.J. Bards, L.R. Faulkner, Electrochemical Methods—Fundamentals and Applica-
tions, second ed., Wiley, New York, 2001, p. 108.
[30] V.I. Kravtsov, Ravnovesie i Kinetika Elektrodnyh Reaktsiy Kompleksov Metallov,
Khimia, Leningrad, 1985, p. 153.
[31] V.V. Kuznetsov, E.G. Vinokurov, V.N. Kudryavtsev, Elektrokhimiya 36 (2000)
756.
[32] V.S. Kublanovskii, A.V. Gorodysky, V.N. Belinskii, T.S. Glushchak, Concentration
Variations in the Near-electrode Layers during Electrolyses, Naukova Dumka,
Kiev, 1978.
[33] V.G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs,
NJ, 1962.
References
[1] N.T. Kudryavtsev, I.I. Potapov, N.G. Sorokina, Zashch. Met. 1 (1965) 304.
[2] J. Datta, Galvanotechnik 73 (1982) 106.
[3] D. Smart, T.E. Such, S.J. Wake, Trans. Inst. Metal. Finish 61 (1983) 105.
[4] I. Roubal, Galvanotechnik 69 (1978) 301.
[5] M.N. Ben-Ali, F.I. Danilov, M.M. Mandryka, Elektrokhimiya 27 (1991) 532.
[6] Ya.M. Kolotyrkin, E.A. Larchenko, G.M. Florianovich, Elektrokhimiya 32 (1996)
431.
[7] I. Drela, J. Szynkarczuk, J. Kubicki, J. Appl. Electrochem. 19 (1989) 933.
[8] Y.B. Song, D.-T. Chin, Electrochim. Acta 48 (2002) 349.
[9] S. Survilene, O. Nivinskiene, A. Cesuniene, A. Selskis, J. Appl. Electrochem. 36
(2006) 649.