L.Ya. Gavrilova et al. / Journal of Solid State Chemistry 184 (2011) 2083–2087
2087
[3] E. Chavez, M. Mueller, L. Mogni, A. Caneiro, J. Appl. Phys.: Conf. Ser. 167
(2009) 012043.
[4] J.H. Kim, Y. Kim, P.A.C.J. Bae, W. Zhou, J. Power Sources 194 (2009) 704–711.
[5] J.-H. Kim, A. Manthiram, J. Electrochem. Soc. 155 (2008) B385–B390.
[6] A. Maignan, C. Martin, D. Pelloquin, N. Nguyen, B. Raveau, J. Solid State Chem.
142 (1999) 247–260.
CoO
0.0
T = 1100°C, air
1.0
0.2
ξCo
[7] P.S. Anderson, C.A. Kirk, J. Knudsen, I.M. Reaney, A.R. West, Solid State Sci.
7 (2005) 1149–1156.
ξSm
0.8
[8] T.V. Aksenova, L. Ya. Gavrilova, D.S. Tsvetkov, V.I. Voronin, V.A. Cherepanov,
Russ. J. Phys. Chem. A 85 (2011) 427–432.
[9] A.N. Petrov, A.Yu. Kropanev, V.M. Zhukovskii, V.A. Cherepanov,
G.K. Neudachina, Russ. J. Inorgan. Chem. 26 (1981) 3190–3194.
[10] A.N. Petrov, V.A. Cherepanov, A.Yu. Zuyev, V.M. Zhukovsky, J. Solid State
Chem. 77 (1988) 1–14.
[11] A.Yu. Kropanev, A.N. Petrov, Inorgan. Mater. 19 (1983) 1782–1785.
[12] A.Yu. Kropanev, A.N. Petrov, V.M. Zhukovskii, Russ. J. Inorgan. Chem
28 (1983) 2938–2943.
3
0.4
0.6
1
2
7
SmCoO3−δ
0.6
BaCoO3−δ
10
0.4
6
11
Ba2CoO4
[13] A.Yu. Kropanev, A.N. Petrov, L.Ya. Rabinovich, Russ. J. Inorgan. Chem.
28 (1983) 2609–2612.
[14] A.Yu. Kropanev, A.N. Petrov, L.Ya. Rabinovich, Inorgan. Mater. 20 (1984)
116–120.
4
8
12
0.8
0.2
9
13
5
[15] G. Demazeau, M. Pouchard, P. Hagenmuller, J. Solid State Chem. 9 (1974)
202–209.
[16] R. Flamand, R. Berjoan, High temperature-high pressures 15 (1983) 693–701.
[17] J.-P. Coutures, J.M. Badie, R. Berjoan, J. Coutures, R. Flamand, A. Rouanet, High
Temp. Sci. 13 (1980) 331–336.
1.0
0.0
0.0
0.2
0.4
Sm2BaO4
0.6
0.8
1.0
BaO
SmO
ξBa
1.5
[18] K. Kitayama, J. Solid State Chem. 76 (1988) 241–247.
[19] K. Kitayama, J. Solid State Chem. 137 (1998) 255–260.
[20] A. Olafsen, H. Fjellva˚ g, B.C. Hauback, J. Solid State Chem. 151 (2000) 46–55.
[21] M.V. Kniga, I.I. Vygovskii, E.E. Klementovich, Zh. Neorgan. Khim. 24 (1979)
1171–1174.
[22] V.B. Lazarev, I.S. Shapligin, Izv. AN SSSR. Chem. Ser 14 (1982) 58–60.
[23] O.V. Godzhieva, N.V. Porotnikov, G.E. Nikiforova, Ye.A. Tishinko, Russ.
J. Inorgan. Chem. 35 (1990) 44–48.
Fig. 5. A projection of isobaric isothermal phase diagram of the Sm–Ba–Co–O system
to the metallic components triangle (T¼1100 1C, Po2¼0.21 atm): 1–SmCoO3ꢀ , CoO
d
and SmBaCo2O5þ
; 2–CoO, SmBaCo2O5þ and BaCoO3ꢀ ; 3–melt; 4–Sm2O3,
d d d
SmCoO3ꢀ and SmBaCo2O5þ ; 5–SmBaCo2O5þ and Sm2ꢀxBaxO3ꢀ (0rxr0.3);
d
d
d
d
6–SmBaCo2O5þ , BaCoO3ꢀ and BaCo0.9Sm0.1O3ꢀ ; 7–SmBaCo2O5þ , BaCo0.9Sm0.1
d
d
d
d
O3ꢀ and Sm1.7Ba0.3O3ꢀ ; 8–Sm1.7Ba0.3O3ꢀ and BaCo1ꢀzSmzO3ꢀ (0.1rzr0.2);
d
d
d
d
9–Sm1.7Ba0.3O3ꢀ
,
d
Sm2BaO4 and BaCo0.8Sm0.2O3ꢀ
;
d
10–BaCoO3ꢀ
,
Ba2CoO4 and
d
[24] A.J. Jacobson, J.L. Hutchison, J. Solid State Chem. 35 (1980) 334–340.
[25] K. Boulahya, M. Parras, A. Vegas, J.M. Gonza´lez-Calbet, Solid State Sci.
2 (2000) 57–64.
BaCo0.9Sm0.1O3ꢀ ; 11–Ba2CoO4 and BaCo1ꢀzSmzO3ꢀ (0.1rzr0.2); 12–Sm2BaO4,
d
d
Ba2CoO4 and BaCo0.8Sm0.2O3ꢀ ; 13–Sm2BaO4, Ba2CoO4 and BaO.
d
´
[26] K. Boulahya, M. Parras, J.M. Gonzalez-Calbet, J. Solid State Chem. 142 (1999)
419–427.
stable within the range 0.1rzr0.2 for the samarium containing
[27] K. Boulahya, M. Parras, J.M. Gonza´lez-Calbet, Chem. Mater. 12 (2000)
2727–2735.
[28] J.M. Gonza´lez-Calbet, K. Boulahya, M.L. Ruiz, M. Parras, J. Solid State Chem.
162 (2001) 322–326.
[29] H. Kobayashi, H. Ogino, M. Nakamura, H. Yamamura, T. Mitamura, J. Ceram.
Soc. Jpn. 102 (1994) 583–586.
[30] Q. Zhiyu, X. Xianran, Y. Wenxia, C. Xialong, W. Soukun, L. Jingkui, X. Sishen,
J. Alloys Compd. 202 (1993) 77–80.
system. Although the difference in the value of ionic radii of
˚
neodymium and samarium ions is not very large (
Dr¼0.03 A [40])
they reveal different character of phase relations. Even their
simple oxides crystallized in different space groups and homo-
geneity ranges of barium oxide solubility vary significantly
(0oxr0.1 for Nd and 0oxr0.3 for Sm).
[31] R. Subasri, O.M. Sreedharan, J. Alloys Compd. 274 (1998) 153–156.
[32] Z.S. Vakhovskaya, A.L. Voskov, M.L. Kovba, I.A. Uspenskaya, J. Alloys Compd.
(2006) 257–259408-412 (2006) 257–259.
Acknowledgments
[33] K.I. Portnoy, N.I. Timofeeva, Oxygen compounds of rare earth elements,
Reference Book, Metallurgia, Moscow, 1986 in Russian.
[34] V.A. Cherepanov, L.Ya. Gavrilova, E.A. Filonova, M.V. Trifonova, V.I. Voronin,
Mater. Res. Bull. 34 (1999) 983–988.
[35] V.A. Cherepanov, L.Ya. Gavrilova, L.Yu. Barkhatova, V.I. Voronin,
M.V. Trifonova, O.A. Bukhner, Ionics 4 (1998) 309–315.
[36] D.D. Khalyavin, A.P. Sazonov, I.O. Troyanchuk, R. Szymczak, H. Szymczak,
Inorg. Mater. 39 (2003) 1092–1096.
[37] L. Siwen, R. Yufang, J. Solid State Chem. 114 (1995) 286–288.
[38] L. Gillie, J. Hadermann, M. Hervieu, A. Maignan, C. Martin, Chem. Mater.
20 (2008) 6231–6237.
[39] M.V. Lomakov, S.Ya. Istomin, A.M. Abakumov, G. Van Tendeloo, E.V. Antipov,
Solid State Ionics 179 (2008) 1885–1889.
This work was financially supported in parts by the Russian
Foundation for Basic Research (project no. 09-03-00620) and the
Ministry for Education and Science of the Russian Federation
within the Federal Target Program ‘‘Research and Teaching Stuff
of Innovative Russia for 2009–2013’’.
References
[40] R.D. Shannon, Acta Crystallogr. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr.
32 (1976) 751–767.
[1] E.V. Tsipis, V.V. Kharton, J. Solid State Electrochem. 12 (2008) 1367–1391.
[2] W. Zhou, T. He, Y. Ji, J. Power Sources 185 (2008) 754–758.