250
M. Wu et al. / Journal of Alloys and Compounds 513 (2012) 245–250
References
[1] X.J. Xu, X.S. Fang, H.B. Zeng, T.Y. Zhai, Y. Bando, D. Golberg, Sci. Adv. Mater. 2
(2010) 273.
[2] D. Vennerberg, Z.Q. Lin, Sci. Adv. Mater. 3 (2011) 26.
[3] Y.S. Chen, Y.L. Wei, P.M. Chang, L.J. Ye, J. Alloys Compd. 509 (2011) 5381.
[4] Y. Tian, G.M. Hua, W. Xu, N. Li, M. Fang, L.D. Zhang, J. Alloys Compd. 509 (2011)
724.
[5] C.H. Ye, Sci. Adv. Mater. 2 (2010) 365.
[6] M.Z. Wu, Y. Xiong, Y.S. Jia, K. Zhang, Q.W. Chen, Appl. Phys. A 81 (2005) 1355.
[7] X.L. Shi, M.S. Cao, J. Yuan, Q.L. Zhao, Y.Q. Kang, X.Y. Fang, Y.J. Chen, Appl. Phys.
Lett. 93 (2008) 183118.
[8] X.M. Zhou, X.W. Wei, Cryst. Growth Des. 9 (2009) 7.
[9] J. Ye, Q.W. Chen, H.P. Qi, N. Tao, Cryst. Growth Des. 8 (2008) 2465.
[10] Z.G. An, J.J. Zhang, S.L. Pan, Mater. Chem. Phys. 123 (2010) 795.
[11] Y.J. Chen, M.S. Cao, Q. Tian, T.H. Wang, J. Zhu, Mater. Lett. 58 (2004) 1481.
[12] M.S. Cao, R.G. Wang, X.Y. Fang, Z.X. Cui, T.J. Chang, H.J. Yang, Powder Technol.
115 (2001) 96.
[13] S. Shiv Shankar, S. Deka, Sci. Adv. Mater. 3 (2011) 169.
[14] A. Zarian, A.I. Zad, A. Dolati, Opt. Commun. 274 (2007) 471.
[15] K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y. Chiang,
A.M. Belcher, Science 312 (2006) 885.
[16] H. Kim, M. Achermann, L.P. Balet, J.A. Hollingsworth, V.I. Klimov, J. Am. Chem.
Soc. 127 (2005) 544.
Fig. 8. Room temperature hysteretic loops of the sample obtained at 200 ◦C for 4 h
with CoCl2·6H2O (2 mmol), NaOH (3 mmol), 1.0 ml of ethylenediamine and 1.0 ml of
hydrazine.
[17] M.C. Parry, G. Bhabra, A. Sood, F. Machado, L. Cartwright, M. Saunders, E. Ing-
ham, R. Newson, A.W. Blom, C.P. Case, Biomaterials 31 (2010) 4477.
[18] W.Q. Qin, C.R. Yang, X.H. Ma, S.S. Lai, J. Alloys Compd. 509 (2011) 338.
[19] J. Krzystek, D.C. Swenson, S.A. Zvyagin, D. Smirnov, A. Ozarowski, J.J. Telser, J.
Am. Chem. Soc. 132 (2010) 5241.
[20] L.P. Zhu, H.M. Xiao, W.D. Zhang, Y. Yang, S.Y. Fu, Cryst. Growth Des. 8 (2008)
1113.
[21] V.F. Puntes, K.M. Krishnan, A.P. Alivisatos, Science 291 (2001) 2115.
[22] S. Okamoto, L.D. Eltis, Metallomics 3 (2011) 963.
coercivity value than that of the bulk (ca. 10 Oe) [41] may result
from the shape anisotropy of our novel cobalt structures.
[23] R. Rungsawang, J. da Silva, C.P. Wu, E. Sivaniah, A. Ionescu, C.H.W. Barnes, N.J.
Darton, Phys. Rev. Lett. 104 (2010) 255703.
4. Conclusions
[24] A. Cortés, R. Lavín, J.C. Denardin, R.E. Marotti, E.A. Dalchiele, P. Valdivia, H.
Gómez, J. Nanosci. Nanotechnol. 11 (2011) 3899.
[25] H. Cao, Z. Xu, H. Sang, D. Sheng, C. Tie, Adv. Mater. 13 (2001) 121.
[26] F. Dumestre, B. Chaudret, C. Amiens, M.C. Fromen, M.J. Casanove, P. Renaud, P.
Zurcher, Angew. Chem. Int. Ed. 41 (2002) 4286.
[27] N.L. Yakovlev, H. Chen, K. Zhang, J. Nanosci. Nanotechnol. 11 (2011) 2575.
[28] M.H. Pan, H. Liu, J.Z. Wang, J.F. Jia, X.Q.K. Xue, J.L. Li, S. Qin, U.M. Mirsaidov, X.R.
Wang, J.T. Markert, Z. Zhang, C.K. Shih, Nano Lett. 5 (2005) 87.
[29] A. Wei, T. Kasama, R.E. Dunin-Borkowski, J. Mater. Chem. (2011),
doi:10.1039/C1JM11916H.
[30] C. Wang, X.J. Han, X.L. Zhang, S.R. Hu, T. Zhang, J.Y. Wang, Y.C. Du, X.H. Wang,
P. Xu, J. Phys. Chem. C 114 (2010) 14826.
[31] X.L. Shi, M.S. Cao, J. Yuan, X.Y. Fang, Appl. Phys. Lett. 95 (2009) 163108.
[32] Y.J. Zhang, Q. Yao, Y. Zhang, Tie.Y. Cui, D. Li, W. Liu, W. Lawrence, Z.D. Zhang,
Cryst. Growth Des. 8 (2008) 3207.
In summary, 3D cobalt microcrystals of radiated structures with
a size about 15 m were successfully synthesized by a simple
hydrothermal reaction. The 3D Co superstructures are comprised
of dozens of well-aligned cobalt dendrites radiating from the cen-
tre. The dosages of NaOH and ethylenediamine played an important
role in the control of size, morphology, and structure of the prod-
ucts. The magnetic measurement shows that cobalt microcrystals
have a higher coercivity. The value of the saturated magneti-
zation (Ms) and coercivity (Hc) was 151.7 emu/g and 355.8 Oe,
respectively. Additionally, this work provides a facile and effective
strategy to the preparation of novel cobalt structures with tunable
morphologies.
[33] P. Chai, X.J. Liu, Z.L. Wang, M.F. Lu, X.Q. Cao, J. Meng, Cryst. Growth Des. 7 (2007)
2568.
[34] L.J. Zhao, L.F. Duan, Y.Q. Wang, Q. Jiang, J. Phys. Chem. C 114 (2010) 10691.
[35] Z.A. Peng, X.G. Peng, J. Am. Chem. Soc. 123 (2001) 1389.
[36] J.D. Goddard, C. Miller, J. Fluid Mech. 28 (1967) 657.
[37] M.S. Cao, H.T. Liu, Y.J. Chen, B. Wang, J. Hu, Sci. China Ser. E-Technol. Sci. 46
(2003) 104.
[38] J.X. Fang, H.J. You, P. Kong, Y. Yi, X.P. Song, B.J. Ding, Cryst. Growth Des. 7 (2007)
865.
[39] Y.N. Zhao, M.S. Cao, H.B. Jin, X.L. Shi, X. Li, S. Agathopoulos, J. Nanosci. Nan-
otechnol. 6 (2006) 2525.
Acknowledgements
This work was financed by the 211 project of Anhui Univer-
sity, National Natural Science Foundation of China (50901074,
60976092, 11174002, 50672001), Anhui Provincial Natural Science
Fund (11040606M49), Higher Educational Natural Science Foun-
dation of Anhui Province (KJ2010A012) and Innovation Project of
Anhui University Graduate Education (yqh090010).
[40] Y.N. Zhao, M.S. Cao, H.B. Jin, L. Zhang, C.J. Qiu, Scripta Mater. 54 (2006) 2057.
[41] Q. Xie, Y.T. Qian, S.Y. Zhang, S.Q. Fu, W.C. Yu, Eur. J. Inorg. Chem. 12 (2006) 2454.