C O M M U N I C A T I O N S
The calculated Nd-Ga bond energy, corrected for thermal and
zero point energies, the preparation energies for the [Ga(MeNCH)2]-
and {Nd}+ fragments, and for basis set superposition errors, is 386
kJ mol-1. This energy is similar to that for the reaction [M(OMe2)5-
{Ga(MeNCH) 2}]+ + [Ga(MeNCH)2]- f [M(OMe2)5{Ga(MeNCH)
2}2] + Me2O (M ) Ca, ∆E ) 348.9 kJ mol-1 and M ) Sr, ∆E )
358.4 kJ mol-1 21
) and an order of magnidude greater than the bond
energy of the Ln-Al bonds in [(Cp*)2LnII-AlI(Cp*)] (Ln ) Eu,
Yb, ca. 30 kJ mol-1).9 Thus, 3 is considerably more stable than
[(Cp*)2Ln-Al(Cp*)] in solution because of the stronger Ln-M
bond in 3. The relatively strong Nd-Ga bond involves charge
transfer from a more polarizable Ga(I) center to a more polarizing
Nd(III) center leading to a bond with Nd-Ga covalent character.
In summary, we have described the synthesis and structure of
the first f-element-gallium bond in a complex which is stable in
solution as well as in the solid state. We are currently investigating
the reactivity of 3 since it contains a lanthanide center bonded to
both an NHC and an isoelectronic anionic gallium-NHC analogue,
both of which have potentially ambiphilic character.
Figure 1. Molecular structure of 3 (thermal ellipsoids at 40% probability
levels, H atoms and Me groups omitted). Selected bond lengths (Å) and
angles (deg): Nd(1)-Ga(1), 3.2199(3); Nd(1)-C(2), 2.669(2); Nd(1)-N(2),
2.223(2); Nd(1)-N(4), 2.357(2); Nd(1)-O(1), 2.5578(19); Ga(1)-N(5),
1.932(2); Ga(1)-N(6), 1.932(2); C(2)-N(1), 1.365(3); C(2)-N(3), 1.367-
(3); N(2)-Nd(1)-N(4), 120.37(8); N(2)-Nd(1)-O(1), 89.64(7); N(4)-
Nd(1)-O(1), 91.43(7); N(2)-Nd(1)-C(2), 82.45(7); N(4)-Nd(1)-C(2),
100.53(8); O(1)-Nd(1)-C(2), 167.84(7); N(2)-Nd(1)-Ga(1), 104.76(6);
N(4)-Nd(1)-Ga(1), 134.69(5); O(1)-Nd(1)-Ga(1), 84.59(4); C(2)-Nd-
(1)-Ga(1), 88.49(5); N(5)-Ga(1)-N(6), 83.89(9); N(1)-C(2)-N(3),
102.8(2).
Acknowledgment. We gratefully acknowledge financial support
from the U.K. Leverhulme Trust, the U.K. EPSRC, and the
Australian Research Council, and we thank Dr L. Maron for
discussions concerning the calculation of 3a.
Supporting Information Available: Experimental, X-ray, and
computational data for 3/3a. This material is available free of charge
References
(1) Cotton, F. A.; Walton, R. A. Multiple Bonds between Metal Atoms, 2nd
ed.; Oxford University Press: New York, 1993.
(2) (a) Linti, G.; Schno¨ckel, H. Coord. Chem. ReV. 2000, 206-207, 285. (b)
Schno¨ckel, H. Dalton Trans. 2005, 3131. (c) Radius, U.; Breher, F. Angew.
Chem., Int. Ed. 2006, 45, 3006. (d) Chisholm, M. H.; Patmore, N. J. Acc.
Chem. Res. 2007, 40, 19.
(3) Adams, R. D.; Cotton, F. A., Eds. Catalysis by Di- and Polynuclear Metal
Cluster Complexes; Wiley-VCH: New York, 1998.
(4) Alexeev, O. S.; Gates, B. C. Ind. Eng. Chem. Res. 2003, 42, 1571.
(5) Holm, R. H.; Kennepohl, P.; Solomon, E. I. Chem. ReV. 1996, 96, 2239.
(6) (a) Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard,
S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Science 1964, 145,
1305. (b) Cotton, F. A.; Curtis, N. F.; Johnson, B. F. G.; Robinson, W.
R. Inorg. Chem. 1965, 4, 326. (c) Cotton, F. A.; Harris, C. B. Inorg. Chem.
1965, 4, 330. (d) Cotton, F. A. Inorg. Chem. 1965, 4, 334.
(7) Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power,
P. P. Science 2005, 310, 844.
(8) Beletskaya, I. P.; Voskoboynikov, A. Z.; Chuklanova, E. B.; Kirillova,
N. I.; Shestakova, A. K.; Parshina, I. N.; Gusev, A. I.; Magomedov, G.
K.-I. J. Am. Chem. Soc. 1993, 115, 3156.
(9) Gamer, M. T.; Roesky, P. W.; Konchenko, S. N.; Nava, P.; Ahlrichs, R.
Angew. Chem., Int. Ed. 2006, 45, 4447.
(10) Arnold, P. L.; Liddle, S. T. Chem. Commun. 2005, 5638.
(11) (a) Arnold, P. L.; Mungur, S. A.; Blake, A. J. Angew. Chem., Int. Ed.
2003, 42, 5981. (b) Liddle, S. T.; Arnold, P. L. Organometallics 2005,
24, 2597. (c) Arnold, P. L.; Liddle, S. T. Organometallics 2006, 25, 1485.
(12) Baker, R. J.; Jones, C. Coord. Chem. ReV. 2005, 244, 1857.
(13) Baker, R. J.; Jones, C.; Platts, J. A. J. Am. Chem. Soc. 2003, 125, 10534.
(14) Green, S. P.; Jones, C.; Lippert, K.-A.; Mills, D. P.; Stasch, A. Inorg.
Chem. 2006, 45, 7242.
(15) Baker, R. J.; Farley, R. D.; Jones, C.; Mills, D. P.; Kloth, M.; Murphy,
D. M. Chem.sEur. J. 2005, 11, 2972.
(16) See Supporting Information for details.
(17) Crystallographic data for 3 at 150 K with Mo KR radiation (λ ) 0.71073
Å): orthorhombic, space group P212121, a ) 14.0875(5), b ) 19.1557-
(6), c ) 22.0078(7) Å, V ) 5938.9(3) Å3, Z ) 4, R1 ) 0.0259 for 12575
(I > 2σ(I)) data, wR2 (all data) ) 0.0632.
(18) Emsley, J. The Elements, 3rd ed.; Oxford University Press: New York,
1998.
(19) Data are unavailable for cations with these coordination numbers but for
a comparison of AlI and GaI see: Wright, R. J.; Brynda, M.; Power, P. P.
Angew. Chem., Int. Ed. 2006, 45, 5953.
(20) Arnold, P. L.; Liddle, S. T. Chem. Commun. 2006, 3959.
(21) Jones, C.; Mills, D. P.; Platts, J. A.; Rose, R. P. Inorg. Chem. 2006, 45,
3146.
Figure 2. The Nd-Ga bond NBO in 3a.
features of the structure of 3 as determined by X-ray crystal-
lography; the Nd(1)-Gd(1) and Nd(1)-C(2) distances are 3.227
and 2.682 Å, respectively, ca. 0.01 Å longer than in the X-ray
crystal structure of 3. A notable difference between the experimental
geometry of 3 and the calculated geometry 3a is the relative
orientation of the [Ga(MeNCH)2]- and {Nd}+ fragments. In 3a
the angle between the planes defined by Nd(1)N(2)N(4) and
Ga(1)N(5)N(6) is 24.7° whereas in 3 this angle is 60.2°. The
calculated structure converged at this geometry irrespective of the
relative orientations of the [Ga(MeNCH)2]- and {Nd}+ fragments
used in the input geometry. Thus, it appears that the steric bulk of
the pendant substituents in 3 controls the relative orientation of
the [Ga(NArCH)2]- and {Nd}+ fragments in 3. However, given
the spherical symmetry and composition of the Nd-Ga bond in
3a (see below) it is likely that the electronic structure and Nd-Ga
bond energy of 3a provide good models for those of 3.
A natural bond orbital (NBO) analysis of 3a reveals natural
charges for Nd(1) and Ga(1) of +2.40 and +0.38, respectively,
consistent with charge transfer from a formal Ga(I) center to a
Nd(III) center to form a Nd-Ga bond with a Wiberg bond order
of 0.827. A NBO analysis of the Nd-Ga bond shows that this bond
is 87% Ga and 13% Nd in character (Figure 2) and involves Nd
6s6p0.015d0.36 and Ga 4s4p1.67 hybrid orbitals, the latter correspond-
ing to the expected sp2 hybridization of the formally Ga(I) center.
JA0710858
9
J. AM. CHEM. SOC. VOL. 129, NO. 17, 2007 5361