16712 J. Phys. Chem. B, Vol. 108, No. 43, 2004
Ju a´ rez et al.
square wave pulsating potential approaches yield different ways
of infiltration of these structures. This work demonstrates the
possibility of fabricating high-quality metallic structures on
semiconductor substrates. Further improvement in the thickness
control of the electrodeposits will help us understand the optical
behavior of metallic opals.
Acknowledgment. This work is partially financed by the
Comunidad Aut o´ noma de Madrid through 07T/0048/2003 and
Spanish MCyT through MAT 2003-01237 projects. We thank
E. Castillo-Martinez, E. Palacios-Lid o´ n and Dr. D. Golmayo
for experimental help.
References and Notes
(
1) Stein, A.; Schroden, R. C. Curr. Opin. Solid State Mater. Sci. 2001,
5, 553.
(2) Lee, K.; Asher, S. A. J. Am. Chem. Soc. 2000, 122, 9534.
Figure 7. XRD from a free-opal sample obtained at 25 °C by cyclic
voltammetry. The inset shows the grain size for samples obtained at
(
(
3) L o´ pez, C. AdV. Mater. 2003, 15, 1679.
25 and 30 °C under cyclic voltammetry and pulsing potential conditions.
4) (a) Moroz, A. Phys. ReV. Lett. 1999, 83, 5274. (b) Moroz, A.
Europhys. Lett. 2000, 50, 466.
substrates, EDX elemental analysis on bulk zinc obtained under
operating conditions identical to those used in the preparation
of zinc composites was obtained after 20 and 30 min of oxygen
plasma etching. The compositional contents were 92 wt % zinc
and 8 wt % oxygen in both cases, confirming that the plasma
etching process used does not largely oxidize the electrodeposits
(
5) Zhang, W. Y.; Lei, X. Y.; Wang, Z. L. Phys. ReV. Lett. 2000, 84,
2853.
(6) Li, Z.-Y. Phys. ReV. B. 2002, 66, 214403
7) Pralle, M. U.; Moelders, N.; McNeal, M. P.; Puscasu, I.; Greenwald,
(
A. C.; Daly, J. T.; Johnson, E. A.; Gerorge, T.; Choi, D. S.; El-Kadi, I.;
Biswas, R. Appl. Phys. Lett. 2002, 81, 4685.
(8) El-Kady, I.; Sigalas, M. M.; Biswas, R.; Ho, K. M.; Soukoulis, C.
M. Phys. ReV. B 2000, 62, 15299.
(not more, at least, than the natural oxidation in air) and thus,
(
9) Wang, Z.; Chan, C. T.; Zhang, W.; Ming, N.; Sheng, P. Phys. ReV.
it can be used as an alternative method to remove the organic
matrix adequately. The compositional content of zinc in zinc
inverted opals varies with the number of layers. In a typical
analysis, the zinc content for a monolayer is around 5 wt %
and 12-20 wt % for 2-3 layers. The signals coming from the
substrates (Si, O, and In) are predominant for a low number of
layers.
X-ray diffractograms were collected between 30° and 100°
at grazing incidence angle. The crystalline structure of elec-
trodeposits on blank substrates is identified to be hexagonal, in
agreement with the known structure for zinc. Figure 7 shows
the diffractogram of one such sample obtained by cyclic
voltammetry at 25 °C on n-Si.
Similar diffractograms were obtained at 30 °C and the same
can be said regarding the square wave pulsating method. The
average size of the particles has been derived from the
diffractograms by the Scherrer formula. The results are shown
in the inset of Figure 7. From these results, it can be concluded
that the grain size of the electrodeposits increases as the
temperature rises. It can be also appreciated that the square wave
pulsating method yields smaller grains under the same condi-
tions.
B 2001, 64, 113108.
(10) Li, Z. Y.; El-Kady, I.; Ho, K. M.; Lin, S. Y.; Fleming, J. G. J.
Appl. Phys. 2003, 93, 38.
(
11) von Freymann, G.; John, S.; Schultz-Dobrick, M.; Velkris, E.;
T e´ treault, N.; Wong, S.; Kitaev, V.; Ozin, G. Appl. Phys. Lett. 2004, 84,
24.
(12) Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P.
A. Nature 1998, 391, 667.
2
(
13) Braun, P. V.; Wiltzius, P. Nature 1999, 402, 603.
(14) (a) Bartlett, P. N.; Birkin P. R.; Ghanem, M. A. Chem Commun.
2000, 1671. (b) Bartlett, P. N.; Baumberg, J. J.; Birkin, P. R.; Ghanem, M.
A.; Netti, M. C. Chem. Mater. 2002, 14, 2199.
(
15) Lee, Y. C.; Kuo, T. J.; Hsu, C. J.; Su, Y. W.; Chen, C. C. Langmuir
002, 18, 9942.
16) (a) Xu, L.; Zhou, W. L.; Frommen, C.; Baughman, R. H.; Zakhidov,
A. A.; Malkinsli, L.; Wang, J. Q.; Wiley, J. B. Chem. Commun. 2000, 997.
b) Wijnhoven, J. E. G. J.; Zevenhuizen, S. J. M.; Hendriks, M. A.;
Vanmaekelbergh, D.; Kelly J. J.; Vos, W. L. AdV. Mater. 2000, 12, 888.
17) Luo, Q.; Liu, Z.; Li, L.; Xie, S.; Kong, J.; Zhao, D. AdV. Mater.
2001, 13, 286.
2
(
(
(
(18) van Vugt, L. K.; van Driel, A. F.; Tjerkstra, R. W.; Bechger, L.;
Vos, W. L.; Vanmaekelbergh, D.; Kelly, J. J. Chem. Commun. 2002, 18,
2
054.
(19) Cassagneau, T.; Caruso, F. AdV. Mater. 2002, 14, 34-38.
(20) (a) Velev, O. D.; Tessier, P. M.; Lenhoff, A. M.; Kaler, E. W.
Nature 1999, 401, 548. (b) Jiang, P.; Cizeron, J.; Bertone, J. F.; Colvin, V.
L. J. Am. Chem. Soc. 1999, 121, 7957.
(21) Lin, S. Y.; Fleming, J. G.; Hetherington, D. L.; Smith, B. K.;
Again, these results support the theoretical models that predict
finer grains for pulse methods as compared to cyclic voltam-
Biswas, R.; Ho, K. M.; Sigalas, M. M.; Zubrzycki, W.; Kurth, S. R.; Bur,
J. Nature 1998, 394, 251.
2
4
(22) Sumida, T.; Wada, Y.; Kitamura, T.; Yanagida, S. Chem. Lett. 2001,
metry based on the fact that nucleation rates are higher.
1
, 138-39.
One major advantage of electrodeposition is that the structure
does not suffer shrinkage, which implies higher quality inverse
opals, obtaining voids consistent with the initial direct structure.
When the growth overflows the opal structure, it can be observed
that deposits are generated, similar to those occurring in the
initial stages (Figure 3a) on blank areas of the electrode, which
lead to the formation of zinc platelets. Future tasks will include
the study of optimum stripping potentials in order to control
the filling fraction of zinc inverted metallic structures.
(23) (a) Marquez, K.; Ortiz, R.; Schultze, J. W.; M a´ rquez, O. P.;
M a´ rquez, J.; Staikov, G. Electrocchem. Acta. 2003, 48, 711. (b) M a´ rquez,
K.; Staikov, G.; Schultze, J. W. Electrocchem. Acta. 2003, 48, 875.
(24) (a) Bard, A. J.; Faulkner L. R.; Eds. Electrochemical Methods
Fundamentals and Applications; John Wiley: New York, 1980. (b) Popov,
K. I.; Masimovic, M. D. In Electrochemistry; Conway, B. E., Bockris, J.
O’M., White, R. E., Eds.; Plenum Press: New York, 1989; Vol. XIX, p
1
93.
(25) Goodwin, W.; Hearn, J.; Ho, C. C.; Ottewill, R. H. Colloid Polym.
Sci. 1974, 252, 464.
(26) Jiang, P.; Bertone, J. F.; Hwang, K. S.; Colvin, V. L. Chem. Mater.
999, 11, 2132.
1
(
27) Mayoral, R.; Requena, J.; Moya, J. S.; L o´ pez, C.; Cintas, A.;
IV. Conclusions
Miguez, H.; Meseguer, F.; Vazquez, L.; Holgado, M.; Blanco, A. AdV.
Mater. 1997, 9, 257.
In summary, zinc inverted opals have been fabricated by
electrochemical deposition on semiconductor substrates from
polystyrene artificial opals. Linear cyclic voltammetry and
(28) M ´ı guez, H.; T e´ treault, N.; Hatton, B.; Yang, S. M.; Perovic D.;
Ozin, G. A. Chem. Commun. 2002, 2736.
(29) Johnson, S. G.; Joannopoulos, J. D. Opt. Express. 2001, 8, 173.