L. Zhu et al. / Journal of Molecular Catalysis A: Chemical 361–362 (2012) 52–57
57
4. Conclusions
Catalytic behaviors of the Pt/CeO and Pt/ZrO catalysts are com-
2
2
pared for selective hydrogenation of crotonaldehyde. It is found
that both catalysts suffer deactivation due to the formation of
organic compounds on the catalyst surface, and the poisoning effect
of CO chemisorptions on Pt atoms. It is also found that the selectiv-
ity to crotyl alcohol decreases with reaction time for the Pt/CeO2
catalyst, while it remains stable for the Pt/ZrO catalyst. The decline
2
of the selectivity on the Pt/CeO2 catalyst could be attributed to the
formation of carbon deposit on the catalyst surface. In contrast, no
carbon deposits are formed on the surface of Pt/ZrO catalyst in the
2
reaction process, which could explain the stable selectivity.
Scheme 1. Proposed adsorption model of crotonaldehyde over Pt/CeO2 and Pt/ZrO2
catalysts.
References
[
[
1] P. Claus, H. Hofmeister, J. Phys. Chem. B 103 (1999) 2766–2775.
2] C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri, S. Galvagno, J. Catal. 236
(2005) 80–90.
suggest that the carbon deposits is formed by the reaction between
3
+
[3] P.G.N. Mertens, P. Vandezande, X. Ye, H. Poelman, Appl. Catal. A: Gen. 335 (2009)
76–183.
4] C.J. Kliewer, M. Bieri, G.A. Somorjai, J. Am. Chem. Soc. 131 (2009) 9958–9966.
[5] E. Gebauer-Henke, J. Grams, E. Szubiakiewicz, J. Farbotko, R. Touroude, J.
Rynkowski, J. Catal. 250 (2007) 195–208.
CO and Ce species on the catalyst surface (Ce O + CO 2CeO + C).
2
3
2
1
3+
It was reported that the reduced Ce cations are beneficial to the
selectivity of crotyl alcohol [26]. However, the reaction between
CO and Ce could results in carbon deposits and deactivate such
Ce sites, and consequently the Pt/CeO2 catalyst turns unselective
due to a poisoning of support sites, which could explain the loss of
selectivity over the Pt/CeO2 catalyst.
[
3
+
[
6] M. Abid, V. Paul-Boncour, R. Touroude, Appl. Catal. A: Gen. 297 (2006) 48–59.
3+
[7] F. Ammari, J. Lamotte, R. Touroude, J. Catal. 221 (2004) 32–42.
[8] K. Liberkova, R. Touroude, D.Y. Murzin, Chem. Eng. Sci. 57 (2002) 2519–2529.
[
9] M. Consonni, D. Jokic, D.Y. Murzin, R. Touroude, J. Catal. 188 (1999)
65–175.
1
In summary, the comparison of these two catalysts suggests that
[
[
[
10] X.X. Wang, H.Y. Zheng, X.J. Liu, G.Q. Xie, J.Q. Lu, L.Y. Jin, M.F. Luo, Appl. Catal. A:
Gen. 388 (2010) 134–140.
11] E.V. Ramos-Ferández, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, Catal.
Commun. 9 (2008) 1243–1246.
the decline of crotyl alcohol selectivity on the Pt/CeO catalyst may
2
result from the formation of carbon species on the catalyst surface.
12] F. Ammari, C. Milome, R. Touroude, J. Catal. 235 (2005) 1–9.
3.3. Adsorption model
[13] J.C. Serrano-Ruiz, J. Luettich, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, J.
Catal. 241 (2006) 45–55.
[
[
14] M.F. Luo, J.M. Ma, J.Q. Lu, Y.P. Song, Y.J. Wang, J. Catal. 246 (2007) 52–59.
15] J.C. Serrano-Ruiz, A. Sepúlveda-Escribano, F. Rodríguez-Reinnoso, D. Duprez, J.
Mol. Catal. A: Chem. 268 (2007) 227–234.
Combined with the Raman and TPO results, adsorption mod-
els of crotonaldehyde over the Pt/CeO2 and Pt/ZrO2 catalysts are
proposed in Scheme 1. CxHyOz stands for organic compounds such
as C8 condensation product generated during the reaction on the
catalysts surfaces. These organic compounds will cover the active
sites of the catalyst, which consequently suppresses the reactiv-
ity. For the Pt/CeO2 catalyst, the carbon deposits formed by CO
reacting with Ce3+ cover the catalyst surface and produce Pt/C inter-
faces, which tends to C C hydrogenation [19] and thus inhibits
[16] E.G. Michael, R.M. Rioux, G.A. Somorjai, Catal. Lett. 128 (2009) 1–8.
[17] M. Englisch, A. Jentys, J.A. Lercher, J. Catal. 166 (1997) 25–35.
[18] M. Grass, R. Rioux, G.A. Somorjai, Catal. Lett. 128 (2009) 1–8.
[19] M. Englisch, V.S. Ranade, J.A. Lercher, Appl. Catal. A: Gen. 163 (1997) 111–122.
[20] P. Chen, G.Q. Xie, H.Y. Zheng, L. Zhu, M.F. Luo, Chin. J. Catal. 32 (2011) 513–519.
[
[
21] T.W. Zerda, W. Xu, A. Zerda, Y. Zhao, R.B. Von Dreele, Carbon 38 (2000) 355–361.
22] C. Casiraghi, F. Piazza, A.C. Ferrari, D. Grambole, J. Robertson, Diam. Relat. Mater.
14 (2005) 1098–1102.
[23] F. Coloma, A. Sepfilveda-Escribano, J.L.G. Fierro, F. Rodríguez-Reinoso, Appl.
Catal. A: Gen. 150 (1997) 165–183.
[
C
O hydrogenation. For the Pt/ZrO2 catalyst, considering that no
24] F. Coloma, J. Narciso-Romero, A. Sepfilveda-Escribano, F. Rodríguez-Reinoso,
Carbon 36 (1998) 1011.
carbon deposit is formed on catalyst surface and the support is
not reducible, the selectivity to crotyl alcohol remains unchanged
during the reaction.
[25] M.R. Benjaram, K. Lakshmi, T. Gode, Chem. Mater. 22 (2010) 467–475.
26] B. Campo, M. Volpe, S. Ivananova, R. Touroude, J. Catal. 242 (2006) 162–171.
[