One-Step Synthesis of Core-Shell Nanopowders via LF-FSP
A R T I C L E S
the literature17,18 has been the great difficulty in using FSP to
synthesize mixed-metal oxide powders. This problem arises
because of the disparate rates of hydrolysis/oxidation of the
individual chlorides even when the resulting mixed-metal oxides
are expected to be completely miscible, e.g., SiO2 and Al2O3
readily form aluminosilicates.
It is important to note at the outset that there are multiple
solution chemistry routes to core-shell metal oxide nano-
powders;8,10,11,27,28 however, these routes often lead to amor-
phous materials that must be heated to crystallize one or both
components. Furthermore, this heating typically causes particle
aggregation limiting their utility for further processing. In
contrast, LF-FSP provides access to fully crystalline core-shell
and easily processed nanomaterials. It also offers access to
unusual kinetic phases and in some instances by repassing the
nanopowders through the LF-FSP system, it provides access to
nanopowders of thermodynamically stable phases that are
difficult to obtain by traditional processing techniques.15,16,24-26
In this paper, we describe efforts to develop routes to binary
CexZr1-xO2 solid solution and ternary (Ce0.7Zr0.3O2)x@(Al2O3)1-x
core-shell nanostructured nanoparticles targeting the develop-
ment of novel catalyst systems for emission control of hydro-
carbons and NOx. In an accompanying paper, we describe high
throughput, combinatorial testing of sets of these nanopowders
to assess their catalytic activity for promoting oxidation of
propane and coincident reduction of NOx. In the accompanying
paper, we find that the LF-FSP produced CexZr1-xO2 and
(Ce0.7Zr0.3O2)x(Al2O3)1-x core-shell nanopowders offer catalytic
activities for deNOx reactions approaching those of Pt containing
catalysts but without the need for Pt. Here we present evidence
In the past decade, we and others have resolved this problem
through the development of liquid-feed flame spray pyrolysis
(LF-FSP) wherein alcohol solutions of organometallic and
preferably metalloorganic precursors (e.g., carboxylates, ꢀ-dike-
tonates, and alkoxides) are aerosolized with oxygen and ignited.
The combustion process generates flames of 1500-2000 °C and
if the combustion derived metal oxide ions are quenched rapidly
enough, ∼1000 °C/ms, it is possible to produce a wide variety
of unaggregated (therefore easily dispersed) nanopowders whose
compositions are determined almost completely by the composi-
tions of the precursors in solution.17-26 Furthermore, it is
possible to produce 100 g/h quantities of mixed-metal oxide
nanopowders in the laboratory with APSs <100 nm and
frequently <20-30 nm, which equates to specific surface areas
(SSAs) of up to 100 m2/g without internal porosity. Alternately,
it is possible to produce up to five different samples/day at
20-30 g quantities.23-26
(5) (a) Figlarz, M.; Fie´vet, F.; Lagier, J. P. U.S. Patent 4,539,041, Sept.
31985. (b) Fie´vet, F.; Lagier, J. P.; Blin, B.; Beaudoin, B.; Figlarz,
M. Solid State Ionics, 1989, 32/33, 198. (c) Kurihara, L. K.; Chow,
G. M.; Schoen, P. E. Nanostruct. Mater. 1995, 6, 607. (e) Laine, R. M.;
Sellinger, A.; U.S. Patent 6,551,960. April 22, 2003.
(6) (a) Suh, W. H.; Suslick, K. S. J. Am. Chem. Soc. 2005, 127, 12007.
(b) Skrabalak, S. E.; Suslick, K. S J. Am. Chem. Soc. 2005, 127, 9990.
(c) Suh, W. H. J. Am. Chem. Soc. 2005, 127, 12007.
for the possible formation of zirconia suboxide species, ZrO2-x
,
which may be responsible for this catalytic behavior.
Experimental Section
Materials. Cerium carbonate [Ce2(CO3)3 ·x(H20), 99%] and
zirconium carbonate [2ZrO2(CO2)·x(H2O), 99%] were purchased
from PIDC Inc. (Ann Arbor, MI). EtOH (99%) was purchased
from standard sources and used as received. Alumatrane
[N(CH2CH2O)3Al] was prepared as described elsewhere.25a Pro-
pionic acid (C2H5CO2H, 99%) was purchased from Aldrich and
used as received.
Precursor Preparation. Precursors with ceramic compositions
[(CeO2)0.7(ZrO2)0.3]x(Al2O3)1-x (x ) 0.9, 0.7, 0.5, 0.3, and 0.1) were
prepared from mixtures of the following metalloorganics.
Al2O3 Precursor. In all cases, alumatrane [N(CH2CH2O)3Al] was
used as the Al2O3 source. An alumatrane/EtOH solution was
prepared containing 10.8 wt % Al2O3 per TGA.
(7) (a) Puntes, V. F.; Zanchet, D.; Erdonmez, C. K.; Alivisatos, A. P.
J. Am. Chem. Soc. 2002, 124, 12874. (b) Liu, H.; Guo, J.-H.; Yin, Y.;
Augustsson, A.; Dong, C.; Nordgren, J.; Chang, C.; Alivisatos, P.;
Thornton, G.; Ogletree, D. F.; Requejo, F. G.; de Groot, F.; Salmeron,
M. Nano Lett. 2007, 7, 1919.
(8) (a) Tsay, J. M.; Pflughoefft, M.; Bentolila, L. A.; Weiss, S. J. Am.
Chem. Soc. 2004, 126, 1926. (b) Kim, S.; Fisher, B.; Eisler, H.-J.;
Bawendi, M. J. Am. Chem. Soc. 2003, 125, 11466.
(9) (a) Grass, R. N.; Athanassiou, E. K.; Stark, W. J. Angew. Chem. 2007,
46, 4909. (b) Athanassiou, E. K.; Grass, R. N.; Osterwalder, N.; Stark,
W. J. Chem. Mater. 2007, 19, 4847. (c) Ponce, A. A.; Klabunde, K. J.
J. Molec. Catal. A 2005, 225, 1.
(10) Nyutu, E. K.; Conner, W. C.; Auerbach, S. M.; Chen, C.-H.; Suib,
S. L. J. Phys. Chem. C. 2008, 112, 1407.
Cerium Propionate Precursor: Ce(O2CCH2CH3)3(OH). Ce-
rium carbonate [Ce2(CO3)3 ·x(H2O), 99%, 70 g, 0.15 mol] was
reacted with excess propionic acid (400 mL, 5.44 mol) in a 1 L
flask equipped with a still head and an addition funnel. N2 was
(11) Chen, T-Y.; Somasundaran, P. J. Am. Ceram. Soc. 1998, 81, 140.
(12) (a) Chen, Q.; Boothroyd, C.; Tan, G. H.; Sutanto, N.; Soutar, A. M.;
Zeng, Z. T. Langmuir 2008, 24, 650. (b) Yeshchenko, O. A.; Dmitruk,
I. M.; Alexeenko, A. A.; Dmytruk, A. A. J. Phys. Chem. Sol. 2008,
69, 1615.
(13) Masala, O.; Seshadri, R. J. Am. Chem. Soc. 2005, 127, 9354.
(14) Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D. J. Am. Chem.
Soc. 2007, 129, 1524–1525.
(25) (a) Hinklin, T.; Toury, B.; Gervais, C.; Babonneau, F.; Gislason, J. J.;
Morton, R. W.; Laine, R. M. Chem. Mater. 2004, 16, 21. (b) Kim,
M.; Hinklin, T. R.; Laine, R. M. Chem. Mater. 2008, 20, 5154. (c)
Marchal, J.; Johns, T.; Baranwal, R.; Hinklin, T.; Laine, R. M. Chem.
Mater. 2004, 16, 822. (d) Kim, S.; Gislason, J. J.; Morton, R. W.;
Pan, X. Q.; Sun, H. P.; Laine, R. M. Chem. Mater. 2004, 16, 2336.
(e) Azurdia, J. A.; Marchal, J.; Laine, R. M. J. Am. Ceram. Soc. 2006,
89, 2749. (f) Azurdia, J. A.; Marchal, J.; Shea, P.; Sun, H.; Pan, X. Q.;
Laine, R. M. Chem. Mater. 2006, 18, 731.
(15) Kodas, T. T.; Hampden-Smith, M. J. Aerosol Processing of Materials;
Wiley-VCH: New York, 1999.
(16) Winterer, M. Nanocrystalline Ceramics, Synthesis and Structure;
Springer: New York, 2002.
(17) Ulrich, G. D. Chem. Eng. News 1984, 62, 22.
(18) Gurav, A.; Kodas, T.; Pluym, T.; Xiong, Y. Aerosol Sci. Technol.
1993, 19, 411.
(19) Burgos-Montes, O.; Moreno, R.; Colomer, M. T.; Farin˜as, J. C. J. Am.
Ceram. Soc. 2006, 89, 484.
(26) (a) Laine, R. M.; Marchal, J. C.; Sun, H. P.; Pan, X. Q. Nat. Mater.
2006, 5, 710. (b) Laine, R. M.; Marchal, J.; Sun, H. J.; Pan, X. Q.
AdV. Mater. 2005, 17, 830. (c) Hinklin, T. R.; Rand, S. C.; Laine,
R. M. AdV. Mater. 2008, 20, 1270.
(20) McCormick, J. R.; Zhao, B.; Rykov, S. A.; Wang, H.; Chen, J. G. J.
Phys. Chem. B. 2004, 108, 17398.
(21) (a) Strobel, R.; Metz, H. J.; Pratsinis, S. E. Chem. Mater. 2008, 20,
6346. (b) Teoh, W. Y.; Setiawan, R.; Ma¨dler, L.; Grunwaldt, J.-D.;
Amal, R.; Pratsinis, S. E. Chem. Mater. 2008, 20, 4069.
(22) Li, D.; Teoh, W. Y.; Selomulya, C.; Woodward, R. C.; Amal, R.;
Rosche, B. Chem. Mater. 2006, 18, 6403.
(27) (a) Sakai, H.; Kanda, T.; Shibata, H.; Ohkubo, T.; Abe, M. J. Am.
Chem. Soc. 2006, 128, 4944. (b) Xu, Z.; Hou, Y.; Sun, S. J. Am. Chem.
Soc. 2007, 129, 8698. (c) Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes,
C. D. J. Am. Chem. Soc. 2007, 129, 1524. (d) Xu, Z.; Hou, Y.; Sun,
S. J. Am. Chem. Soc. 2007, 129, 8698.
(23) Laine, R. M.; Waldner, K.; Bickmore, C.; Treadwell, D. R. U.S. Patent
5,958,361, September 28, 1999.
(28) (a) Teng, X.; Yang, H. J. Am. Chem. Soc. 2003, 125, 14559. (b) Lai,
J.; Shafi, K. V. P. M.; Ulman, A.; Loos, K.; Popovitz-Biro, R.; Lee,
Y.; Vogt, T.; Estournes, C. J. Am. Chem. Soc. 2005, 127, 5730. (c)
Deng, Y.; Qi, D.; Deng, C.; Zhang, X.; Zhao, D. J. Am. Chem. Soc.
2008, 130, 28.
(24) (a) Kim, M.; Laine, R. M. J. Cer. Proc. Res. 2007, 8, 129. (b) Kim,
M.; Hinklin, T. R.; Laine, R. M. Chem. Mater. 2008, 20, 5154. (c)
Kim, M., Laine, R. M. submitted to J. Am. Ceram. Soc.
9
J. AM. CHEM. SOC. VOL. 131, NO. 26, 2009 9221