M. Salavati-Niasari et al. / Polyhedron 28 (2009) 3005–3009
3009
using both oleylamine and triphenylphosphine as capping agents
are preferred for the synthesis of small size, pure ZrO2
nanoparticles.
4. Conclusion
ZrO2 nanoparticles powders were prepared via thermolysis of a
new precursor, [Zr(HAP)3(H2O)2](NO3). ZrO2 nanoparticles were
synthesized under different conditions. The TEM image shows that
the size of the quasi-spherical nanoparticles synthesized in the
presence of oleylamine and TPP are about 30–40 nm. According
to the XRD pattern, to prepare cubic ZrO2 nanospherical particles,
oleylamine and TPP must be used together. Thermolysis is a simple
method to prepare ZrO2 nanoparticles and is one that can be used
for large-scale syntheses.
Acknowledgment
Authors are grateful to the Council of the University of Kashan
for providing financial support to undertake this work.
Fig. 7. TEM image of ZrO2 nanoparticles ((sample 1); [Zr(HAP)3(H2O)2](NO3) was
calcined at 600 °C for 4 h).
References
[1] V. Grover, R. Shukla, A.K. Tyagi, Scripta Mater. 57 (2007) 699.
[2] W. Li, H. Huang, H. Li, W. Zhang, H. Liu, Langmuir 24 (2008) 8358.
[3] G.-Y. Guo, Y.-L. Chen, J. Solid State Chem. 178 (2005) 1675.
[4] J. Liang, X. Jiang, G. Liu, Z. Deng, J. Zhuang, F. Li, Y. Li, Mater. Res. Bull. 38 (2003)
161.
[5] V.A. Sadykov, V.I. Zaikovskii, D.A. Zyuzin, E.M. Moroz, E.B. Burgina, A.V.
Ishchenko, Mater. Res. Soc. Symp. Proc. E 878 (2005) 481.
[6] D. Vollath, K.E. Sickafus, Nanostruct. Mater. 1 (1992) 427.
[7] V.V. Srdic, M. Winterer, J. Eur. Ceram. Soc. 26 (2006) 3145.
[8] C. Stocker, A. Baiker, J. Non-Cryst. Solids 223 (1998) 165.
[9] I.I. Stefanc, S. Music, G. Stefanic, A. Gajovic, J. Mol. Struct. (1999) 480.
[10] J.A. Wang, M.A. Valenzuela, J. Salmones, A. Vazquez, A. Garcia-Ruiz, X. Bokhimi,
Catal. Today 68 (2001) 21.
[11] N.L. Wu, T.F. Wu, J. Am. Ceram. Soc. 83 (2000) 3225.
[12] P.E. Meskin, V.K. Ivanov, A.E. Barantchikov, B.R. Churagulov, Y.D. Tretyakov,
Ultrason. Sonochem. 13 (2006) 47.
[13] R. Nitsche, M. Rodewald, G. Skandan, H. Fuess, H. Hahn, Nanostruct. Mater. B 7
(1996) 535.
[14] R.D. Purohit, S. Saha, A.K. Tyagi, Mater. Sci. Eng. B 130 (2006) 57.
[15] H.Y. Lee, W. Riehemann, B.L. Mordike, J. Eur. Ceram. Soc. 10 (1992) 245.
[16] F. Davar, Z. Fereshteh, M. Salavati-Niasari, J. Alloys Compd. 476 (2009) 797.
[17] M. Salavati-Niasari, Z. Fereshteh, F. Davar, Polyhedron 28 (2008) 126.
[18] M. Salavati-Niasari, F. Davar, Mater. Lett. 63 (2009) 441.
[19] M. Salavati-Niasari, F. Davar, M. Mazaheri, Mater. Lett. 62 (2008) 1890.
[20] M. Salavati-Niasari, F. Davar, N. Mir, Polyhedron 27 (2008) 3514.
[21] G.I. Spijksma, H.J.M. Bouwmeester, D.H.A. Blanka, V.G. Kessler, Chem.
Commun. (2004) 1874.
[22] C. Hagfeldt, V. Kessler, I. Persson, J. Chem. Soc., Dalton. Trans. (2004) 2142.
[23] G.I. Spijksma, H.J.M. Bouwmeester, D.H.A. Blank, A. Fischer, M. Henry, V.G.
Kessler, Inorg. Chem. 45 (2006) 4938.
[24] M. Putknen, L. Niinisto, J. Mater. Chem. 11 (2001) 3141.
[25] M. Hussain, M. Mazhar, M.K. Rauf, M. Ebihara, T. Hussain, Bull. Korean Chem.
Soc. 29 (2008) 92.
[26] T. Hyeon, S.S. Lee, J. Park, Y. Chung, H.B. Na, J. Am. Chem. Soc. 123 (2001)
12794.
[27] J.V. Hoene, R.G. Charles, W.M. Hickam, J. Phys. Chem. 62 (1958) 1098.
[28] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, Englewood
Cliffs, 2001.
[29] J. Yang, Z.W. Quan, D.Y. Kong, X.M. Liu, J. Lin, J. Cryst. Growth Des. 7 (2007)
730.
[30] M.N. Tahir, L. Gorgishvili, J. Li, T. Gorelik, U. Kolb, L. Nasdala, W. Tremel, Solid
State Sci. 9 (2007) 1105.
Fig. 8. SEM image of the ZrO2 nanoparticles (sample 2).
to 245 °C for 90 min led to ZrO2 nanoparticles with a quasi-spher-
ical shape and an average size of about 30 nm, but the products are
agglomerated (sample 2) (Fig. 8). Also 0.6 g [Zr(HAP)3(H2O)2](NO3)
and 5 g of TPP (sample 3) were heated together at 250 °C for
90 min, but after washing with ethanol no precipitation was ob-
tained. To prepare ZrO2 spherical nanocrystals (sample 4), the pro-
cedure mentioned in Section 2, including C18H37N and TPP, was
carried out. Considering the different conditions employed to pre-
pare these samples, it is obvious that using both C18H37N and TPP
as capping agents are preferred in ZrO2 nanoparticle synthesis.
In summary, pure zirconium oxide nanoparticles arrays were
successfully prepared by the thermolysis method. We have used
SEM, TEM, XRD, XPS, FT-IR and PL techniques to characterize the
structure of the zirconia nanoparticles. XRD analysis indicated that
the nanoparticles closely resembled cubic zirconia nanoparticles.
ZrO2 was also prepared by heat-treatment of bis-aqua, tris-2-
hydroxyacetophenato zirconium (IV) nitrate, [Zr(HAP)3(H2O)2]
(NO3). The morphology and particle size of the obtained products
were compared with each other. Considering the different condi-
tions employed in the synthesis of nanoparticles, it is obvious that
[31] J. Joo, T. Yu, Y.W. Kim, H.M. Park, F. Wu, J.Z. Zhang, T. Hyeon, J. Am. Chem. Soc.
125 (2003) 6553.
[32] N. Zhao, D. Pan, W. Nie, X. Ji, J. Am. Chem. Soc. 128 (2006) 10118.
[33] A. Feinberg, C.H. Perry, J. Phys. Chem. Solids 42 (1981) 513.
[34] K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, 4th
Ed., Chemical Industry Press, Beijing, 1991.
[35] D.-Y. Kim, C.-H. Lee, S.J. Park, J. Mater. Res. 11 (1996) 2583.
[36] S.F. Wang, F. Gu, M.K. Lü, Z.s. Yang, G.J. Zhou, H.P. Zhang, Y.Y. Zhou, S.M. Wang,
Opt. Mater. 28 (2006) 1222.
[37] M.M. Rashad, H.M. Baioumy, J. Mater. Process. Technol. 195 (2008) 178.