S.A. Sadeek et al. / Spectrochimica Acta Part A 78 (2011) 854–867
867
one Ocarboxylate atom of each ciprofloxacin ligand and Cl ion. The
I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y.
Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, J. L.Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle,
and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998.
˚
Zr–O21a and Zr–O21b bond lengths are 2.192 and 2.194 A, respec-
tively, are shorter than that of Zr–O23a and Zr–O23b (2.404 and
˚
[17] W.J. Stevens, M. Krauss, H. Bosch, P.G. Jasien, Can. J. Chem. 70 (1992) 612.
[18] S.A. Sadeek, J. Mol. Struct. 753 (2005) 1.
2.195 A, respectively) and the bond distance between Zr–Cl is
˚
2.299 A [53]. Also the angles around the central Zr(IV) metal ion
[19] S.A. Sadeek, M.S. Refat, H.A. Hashem, J. Coord. Chem. 59 (2006) 7.
[20] S.A. Sadeek, W.H. EL-Shwiniy, J. Mol. Struct. 977 (2010) 243.
[21] S.A. Sadeek, W.H. EL-Shwiniy, J. Mol. Struct. 981 (2010) 130.
[22] S.A. Sadeek, W.H. EL-Shwiniy, J. Coord. Chem. 63 (2010) 3471.
[23] S.A. Sadeek, W.H. EL-Shwiniy, W.A. Zordok, A.M. EL-Didamony, J. Argent. Chem.
Soc. 97 (2009) 128.
[24] S.A. Sadeek, A.M. EL-Didamony, W.H. EL-Shwiniy, W.A. Zordok, J. Argent. Chem.
Soc. 97 (2009) 51.
[25] D.J. Beecher, A.C. Wong, Identification of hemolysin Bl-producing Bacillus cereus
isolated by a discontinuous hemolytic pattern in blood agar, Appl. Environ.
Microbiol. (1994).
[26] W.J. Geary, Coord. Chem. Rev. 7 (1971) 81.
[27] R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectroscopic Identification of Organic
Compounds, fifth ed., Wiley, New York, 1991.
[28] F. Gao, P. Yang, J. Xie, H. Wang, J. Inorg. Biochem. 60 (1995) 61.
[29] I. Turel, P. Bukovec, M. Quiros, Int. J. Pharm. 152 (1997) 59.
[30] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Com-
pounds, fourth ed., Wiley, New York, 1986.
with surrounding oxygen atoms vary from 73.053 to 101.42; these
values agree with these expected for a distorted octahedron.
The charges accumulated on Ocarboxylate are −0.388 and −0.399
and for Oketo are −0.385 and −0.354 in chloride complex while for
water complex the charges on Ocarboxylate are −0.367 and −0.372
and Oketo is −0.335 and −0.376, so that the Zr(IV) metal ion is
bonded strongly with surrounded oxygen atoms of ciprofloxacin
in chloride complex more than that in water complex. There is a
strong interaction between central Zr(IV) metal ion which become
has charge equal +0.988 in chloride complex. The energy of this
complex is −492.57021 au and highly dipole 10.69 D. For all these
reasons the chloride complex is more stable than water complex
and Zr(IV) favor coordinated with one ion of chloride more than
one molecule of water to complete the octahedron structure.
[31] M.S. Refat, Spectrochim. Acta 68 (2007) 1393.
[32] G. Pasomas, A. Tarushi, E.K. Efthimiadou, Polyhedron 27 (2008) 133.
[33] F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, Advanced Inorganic
Chemistry, sixth ed., Wiley, New York, 1999.
References
[34] F.A. Cotton, C.W. Wilkinson, Advanced Inorganic Chemistry, Third ed., Inter-
science Publisher, New York, 1972.
[35] A.W. Coats, J.P. Redfern, Nature 201 (1964) 68.
[1] D.C. Hooper, J.S. Wolfson, Quinolone Antimicrobial Agent, second ed., American
Society of Microbiology, Washington, DC, U.S.A., 1995.
[2] G. Pasomas, J. Inorg. Biochem. 102 (2008) 1798.
[36] H.W. Horowitz, G. Metzger, Anal. Chem. 35 (1963) 1464.
[37] I. Muhammad, I. Javed, I. Shahid, I. Nazia, Turk. J. Biol. 31 (2007) 67.
[38] T. Skauge, I. Turel, E. Sletten, Inorg. Chim. Acta 339 (2002) 239.
[39] M.N. Hughes, The Inorganic Chemistry of Biological Processes, second ed.,
Wiley, New York, 1981.
[3] D.E. King, R. Malone, S.H. Lilley, Am. Fam. Phys. 61 (2000) 2741.
[4] P. Drevensˇek, N.P. Ulrih, A. Majerle, I. Turel, J. Inorg. Biochem. 100 (2006) 1705.
[5] I. Turel, Coord. Chem. Rev. 232 (2002) 27.
[6] E.K. Efthimiadou, Y. Sanakis, C.P. Raptopoulou, A. Karaliota, A. Katsaros, G. Paso-
mas, Bioorg. Med. Lett. 16 (2006) 3864.
[40] M. Imran, J. Iqbal, S. Iqbal, N. Ijaz, Turk. J. Biol. 31 (2007) 67.
[41] E.K. Efthimiadou, A. Karaliota, G. Pasomas, J. Inorg. Biochem. 104 (2010) 455.
[42] W. Kohn, L.J. Sham, Phys. Rev. A 140 (1965) 1133.
[43] A.D. Becke, Phys. Rev. A 38 (1988) 3098.
[44] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988).
[7] E.K. Efthimiadou, A. Karaliota, G. Pasomas, Polyhedron 27 (2008) 349.
[8] K. Shiba, M. Sakamoto, Y. Nakazawwa, O. Sakai, Fifth International Symposium
on New Quinolones (Programme and Abstract), 95, 1994.
[9] I. Turel, K. Gruber, I. Leban, N. Bukovec, J. Inorg. Biochem. 61 (1996) 197.
[10] Z.F. Chen, R.J. Xiong, J.L. Zuo, Z. Guo, X.Z. You, K.H. Fun, J. Chem. Soc. Dalton
Trans. 22 (2000) 4013.
[11] I. Turel, L. Leban, G. Klintschar, N. Bukovec, S. Zalar, J. Inorg. Biochem. 66 (1997)
77.
[12] M. Ruiz, R. Ortiz, L. Perello, J.S. Carrio, J. Inorg. Biochem. 65 (1997) 87.
[13] M. Ruiz, L. Perello, R. Ortiz, A. Castineiras, C.M. Mossmer, E. Canton, J. Inorg.
Biochem. 59 (1995) 801.
[14] B. Macias, M.V. Villa, I. Rubio, A. Castineiras, J. Borras, J. Inorg. Biochem. 84
(2001) 163.
[15] K.C. Skyrianou, E.K. Efthimiadou, V. Psycharis, A. Terzis, D.P. Kessissoglou, G.
Pasomas, J. Inorg. Biochem. 104 (2009) 1617.
[16] Gaussian 98, Revision A.6, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuse-
ria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E.
Stratmann, J. C. Burant, S. Dapprich, J. M.Millam, A. D. Daniels, K. N. Kudin,
M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci,
C. Pomelli, C. Adamo, S.Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q.
Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Fores-
man, J.Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz,
[45] R.L. Flurry Jr., Molecular Orbital Theory of Bonding in Organic Molecules, Marcel
Decker, New York, 1968.
[46] I. Turel, I. Leban, N. Bukovec, J. Inorg. Biochem. 66 (1997) 241.
[47] I. Turel, L. Golic, P. Bukovec, M. Gubina, J. Inorg. Biochem. 71 (1998) 53.
[48] R. Khoshnavazi, A. Salimi, A. Ghiasi Moaser, Polyhedron 27 (2008) 1303.
[49] L.L. Shen, in: D.C. Hopper, J.S. Wolfson (Eds.), Quinolone Antimicrobial Agents,
second ed., American Sociaty for Microbiology, Washington, DC, 1993.
[50] P.C. Andrews, T. Beck, B.H. Frasr, P.C. Junk, M. Massi, Polyhedron 26 (2007) 5406.
[51] Q. Chen, Y.D. Chang, J. Zubieta, Inorg. Chem. Acta 258 (1997) 257.
[52] G. Paolucci, M. Vignola, L. Coletto, B. Pitteri, F. Benetollo, J. Organ. Chem. 687
(2003) 161.
[53] A. Antinolo, R. Fernandez-Galan, A. Otero, S. Prashar, I. Rivilla, A.M. Rodriguez,
J. Organ. Chem. 691 (2006) 2924.
[54] T. Cuenca, P. Gomez-Sal, C. Martin, B. Royo, P. Royo, J. Organ. Chem. 588 (1999)
134.
[55] D.P. Steinhuebel, P. Fuhrmann, S.J. Lippard, Inorg. Chem. Acta 270 (1998) 527.
[56] W. Petz, F. Weller, E.V. Avtomonov, J. Organ. Chem. 598 (2000) 403.