body-centred cubic structure of indium oxide.30 TEM studies
carried out on materials 2/O2 and 3/O2 clearly show that the
size and shape of the nanometer scale objects are not affected
by the thermal treatment under dioxygen atmosphere.
8
9
D. Ozkaya, W. Zhou, J. M. Thomas, P. Midgley, V. J. Keast and
S. Hermans, Catal. Lett., 1999, 60, 113; F. Schweyer, P.
`
Braunstein, C. Estournes, J. Guille, H. Kessler, H.-L. Paillaud
and J. Rose, Chem. Commun., 2000, 1271.
´
Z. Y. Yuan, S. Q. Liu, T. H. Chen, J. Z. Wang and H. X. Li,
Chem. Commun., 1995, 973; M. Iwamoto, T. Abe and Y.
Tachibana, J. Mol. Catal. A: Chem., 2000, 155, 143; R. Ko¨hn
and M. Fro¨ba, Catal. Today, 2001, 68, 227; R. S. Mulukutla,
K. Asakura, S. Namba and Y. Iwasawa, Chem. Commun.,
1998, 1425.
In summary, we describe for the first time the incorporation
of indium within organised mesoporous hybrid materials
allowing a good control of the size of the nanoparticles
obtained. The exclusive formation of the particles inside the
pore channels of the mesoporous material likely results from
the coordination of the organometallic precursors to the
ligands (e.g., phosphonate) present in the mesoporous struc-
ture. Only when the channels are saturated with indium do
we observe some out-of-pore growth. We also show that the
oxidation of these nanoparticles to give indium oxide can be
achieved without modification of their size and shape. Further-
more, by modifying the experimental conditions, indium
nanorods were obtained and treated in the same way to give
indium oxide nanorods. Applications of these nanometer scale
objects in various fields including optics will be reported later.
10 X.-J. Han, J. M. Kim and G. D. Stucky, Chem. Mater., 2000, 12,
2068; M. H. Huang, A. Choudrey and P. Yang, Chem. Commun.,
2000, 1063; Z. Liu, Y. Sakamoto, T. Ohsuna, K. Hiroga, O.
Terasaki, C. H. Ko, H. J. Shin and R. Ryoo, Angew. Chem.,
Int. Ed., 2000, 39, 3107; A. Fukuoka, Y. Sakamoto, S. Guan, S.
Inagaki, N. Sugimoto, Y. Fukushima, K. Hirahara, S. Iijima
and M. Ichidawa, J. Am. Chem. Soc., 2001, 123, 3373; H. Kang,
Y.-W. Jun, J.-I. Park, K.-B. Lee and J. Cheon, Chem. Mater.,
2000, 12, 3530.
´
11 R. J. P. Corriu, C. Hoarau, A. Mehdi and C. Reye, Chem. Com-
mun., 2000, 71; R. J. P. Corriu, A. Mehdi and C. Reye, C. R.
´
Acad. Sci., Ser. IIc: Chim., 1999, 2, 35; R. J. P. Corriu, F. Embert,
´
Y. Guari, A. Mehdi, C. Reye and C. Thiuleux, Chem. Commun.,
2001, 1116.
12 R. J. P. Corriu, L. Datas, Y. Guari, A. Mehdi, C. Reye and C.
´
Experimental
Thieuleux, Chem. Commun., 2001, 763.
13 Y. Guari, C. Thieuleux, A. Mehdi, C. Reye, R. J. P. Corriu, S.
´
Gomez-Gallardo, K. Philippot, B. Chaudret and R. Dutartre,
In a typical experiment, the incorporation of indium was done
as follows. A solution of InCp (23.5 mg, 0.13 mmol.) in toluene
(10 mL) was added to a suspension of A1 orB1 (100 mg) in
toluene (5 mL) at room temperature under argon and stirred
overnight. The product was filtered off, rinsed with toluene and
dried under vacuum to afford materials A2a or B2a as slightly
grey powders. Similar treatment of material A1 repeated five
times led to material A2b as a black powder. The same quantity
of InCp (117.5 mg, 0.75 mmol.) as in the last experiment was
added in a one-step impregnation and led to material A2c . A
one-step impregnation with the same quantity of InCp at
reflux in toluene led to material A3c .
Chem. Commun., 2001, 1374; Y. Guari, C. Thieuleux, A. Mehdi,
´
C. Reye, R. J. P. Corriu, S. Gomez-Gallardo, K. Philippot and
B. Chaudret, Chem. Mater., 2003, 15, 2017.
14 J. Turkevitch, P. C. Stevenson and J. Hillier, Discuss. Faraday
Soc., 1951, 73, 55.
`
15 S. Gomez, K. Philippot, V. Colliere, B. Chaudret, F. Senocq and
P. Lecante, Chem. Commun., 2000, 1945; S. Gomez, L. Erades, K.
`
Philippot, B. Chaudret, V. Collieres, O. Balmes and J.-O. Bovin,
Chem. Commun., 2001, 1474.
16 H. Wellmann, J. Rathousky, M. Wark, A. Zukal and G.
Schylz-Ekloff, Microporous Mesoporous Mater., 2001, 44–45,
419; C. R. Patra, A. Ghosh, P. Mukherjee, M. Sastry and R.
Kumar, Stud. Surf. Sci. Catal., 2002, 141, 641; Y. S. Cho, J. C.
Park, B. Lee, Y. Kim and J. Yi, Catal. Lett., 2002, 81, 89;
C.-H. Yang, P.-H. Liu, Y.-F. Ho, C.-Y. Chiu and K.-J. Chao,
Chem. Mater., 2002, 15, 275.
17 L.-X. Zhang, J.-L. Shi, J. Yu, Z.-L. Hua, X.-G. Zhao and M.-L.
Ruon, Adv. Mater., 2002, 14, 1510; C.-M. Yang, H.-S. Sheu and
K.-J. Chao, Adv. Funct. Mater., 2002, 12, 143.
Acknowledgements
´
The authors thank the CNRS and the Universite de Montpel-
lier II for financial support. C. T. thanks Air Liquide for a
grant.
18 M.-S. Lee, W. C. Choi, E. K. Kim, C. K. Kim and S.-K. Min,
Thin Solid Films, 1996, 279, 1.
^
19 A. Gurlo, M. Ivanovskaya, N. Barsan, M. Schweizer-Berberich, U.
´
Weimar, W. Go¨pel and A. Dieguez, Sens. Actuators, B, 1998,
44, 327.
20 C. Liang, G. Meng, Y. Lei, F. Phillipp and L. Zhang, Adv. Mater.,
2001, 13, 1330.
21 H. Zhou, W. Cai and L. Zhang, Mater. Res. Bull., 1999, 34, 845;
H. Zhou, W. Cai and L. Zhang, Appl. Phys. Lett., 1999, 75,
495.
22 A. Murali, A. Barve, V. J. Leppert, S. H. Risbud, I. M. Kennedy
and H. W. H. Lee, Nano Lett., 2001, 1, 287.
23 O. T. Beachley, Jr., J. C. Pazik, R. Z. Glassman, M. R. Churchill,
J. C. Fettinger and R. Blom, Organometallics, 1998, 7, 1051.
24 B. Marler, U. Oberhageman, S. Vortmann and H. Gies, Micropor-
ous Mater., 1996, 6, 375.
25 B. J. Aronson, C. F. Blanford and A. Stein, J. Phys. Chem. B,
2000, 104, 449.
26 V. F. Puntes, K. M. Krishana and A. P. Alivisatos, Appl. Phys.
Lett., 2001, 78, 2187; V. F. Puntes, K. M. Krishnan and A. P.
Alivisatos, Science, 2001, 291, 2115.
27 Z. A. Peng and X. Peng, J. Am. Chem. Soc., 2001, 123, 1389.
28 C. Pang, K. Pelzer, K. Philippot, B. Chaudret, F. Dassenoy, P.
Lecante and M.-J. Casanove, J. Am. Chem. Soc., 2001, 123, 7584.
29 D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F.
Chmelka and G. D. Stucky, Science, 1998, 279, 548.
30 From the XRD diagram obtained, the space groups Ia-3 and I213
could not be distinguished.
References
1
2
3
4
A. P. Alivisatos, Science, 1996, 271, 933; J. Shi, S. Gider, D.
Babcock and D. D. Awschalom, Science, 1996, 271, 937.
Clusters and Colloids, from Theory to Applications, ed. G. Schmid,
VCH, Weinheim, 1994.
Nanoparticles and Nanostructured Films, Preparation, Characteri-
zation and Applications, ed. J. H. Fendler, VCH, Weinheim, 1998.
K. Soulantica, A. Maisonnat, F. Senocq, M.-C. Fromen, M.-J.
Casanove, P. Lecante and B. Chaudret, Angew. Chem., Int. Ed.,
2001, 40, 2984.
5
K. Soulantica, A. Maisonnat, M.-C. Fromen, M.-J. Casanove, P.
Lecante and B. Chaudret, Angew. Chem., Int. Ed., 2001, 40, 448;
F. Dumestre, B. Chaudret, C. Amiens, M.-C. Fromen, M.-J.
Casanove, P. Renaud and P. Zurcher, Angew. Chem., Int. Ed.,
2002, 41, 4286.
6
7
C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S.
Beck, Nature (London), 1992, 359, 710.
Y. Plyuto, J.-M. Berquier, C. Jacquiod and C. Ricolleau, Chem.
Commun., 1999, 1653; P. Mukherjee, C. R. Patra, R. Kumar
and M. Sastry, Phys. Chem. Commun., 2001, 5; L. H. Bronstein,
S. Polarz, B. Smarsly and M. Antonietti, Adv. Mater., 2001, 13,
1333; M. A. Aramendia, V. Borau, C. Jimenez, J. M. Marinas
and F. J. Romero, Chem. Commun., 1999, 873.
New J. Chem., 2003, 27, 1029–1031
1031