ChemComm
Communication
supertetrahedral anions are present in [Na10(H2O)32][Zn5Sn5S20].15
In contrast to these supertetrahedra, which are based on barrelane-
type or adamantane-type motifs, the structural condensation of six-
membered rings is different in 4–6. Besides the fact that the Zn2+ ions
also contribute to the inorganic cluster core in 4–6, these compounds
are the first ones to demonstrate a successful trapping of metal ions
by a terminal organic ligand on a semi-metal cluster surface. Thereby,
they clearly point toward the possibility to form further examples of
metals@ligands on inorganic clusters with T–E or M–T–E cores.
Notes and references
‡ X-ray crystallographic data: Data collection on a STOE IPDS2 diffracto-
meter using graphite-monochromatized Mo Ka radiation (l = 0.71073 Å)
at 100 K. Structure solution and refinement by direct methods and full-
matrix least-squares on F2, respectively; SHELXTL software.16 The crystal-
lographic data are provided in the ESI.†
1 B. I. Ipe, K. Yoosaf and K. G. Thomas, J. Am. Chem. Soc., 2006, 128, 1907.
¨
2 B. O’Regan and M. Gratzel, Nature, 1991, 353, 737.
3 H. Maeda, R. Sakamoto, Y. Nishimori, J. Sendo, F. Toshimitsu,
Y. Yamanoi and H. Nishihara, Chem. Commun., 2011, 47, 8644.
4 (a) P. Feng, X. Bu and N. Zheng, Acc. Chem. Res., 2005, 38, 293;
(b) M. G. Kanatzidis, Adv. Mater., 2007, 19, 1165; (c) D. G. MacDonald
and J. F. Corrigan, Philos. Trans. R. Soc., A, 2010, 368, 1455;
(d) S. Dehnen and M. Melullis, Coord. Chem. Rev., 2007, 251, 1259;
(e) J. Heine and S. Dehnen, Z. Anorg. Allg. Chem., 2012, 638, 2425.
Fig. 2 Side view (top) and top view (bottom) of the molecular structure of 4 as
an example for the isostructural motifs found in 4–6 (left hand side). Illustration
of the inorganic [Sn4Zn8X8S10] cluster core (right hand side). Hydrogen atoms are
omitted for clarity. Thermal ellipsoids are drawn at 50% probability.
¨
5 (a) C. Dorfelt, A. Janeck, D. Kobelt, E. F. Paulus and H. Scherer,
J. Organomet. Chem., 1968, 14, P22; (b) H. Berwe and A. Haas, Chem.
Ber., 1987, 120, 1175.
(4Á2CHCl3Á2CH2Cl2, tetragonal, I41/a, Fig. 2), [(R4Sn)4(Zn8Br8)S10]Á
´
6 (a) Z. H. Fard, L. Xiong, C. Mu¨ller, M. Hołynska and S. Dehnen,
4
%
CHCl3ÁCH2Cl2 (5ÁCHCl3ÁCH2Cl2, triclinic, P1), and [(R Sn)4(Zn8I8)S10]Á
Chem.–Eur. J., 2009, 15, 6595; (b) Z. H. Fard, C. Mu¨ller, T. Harmening,
¨
1.25CHCl3Á0.75MeOHÁ0.5H2O (6Á1.25CHCl3Á0.75MeOHÁ0.5H2O, tricli-
R. Pottgen and S. Dehnen, Angew. Chem., Int. Ed., 2009, 48, 4441; (c) S.
´
Heimann, M. Hołynska and S. Dehnen, Chem. Commun., 2011, 47, 1881.
%
nic, P1). The discrete cluster cores in 4–6 possess the same topology
7 (a) M. R. Halvagar, Z. H. Fard, L. Xiong and S. Dehnen, Inorg. Chem.,
2009, 48, 7373; (b) M. R. Halvagar, Z. H. Fard and S. Dehnen, Chem.
Commun., 2010, 46, 4716; (c) Z. H. Fard, M. R. Halvagar and
S. Dehnen, J. Am. Chem. Soc., 2010, 132, 2848; (d) M. R. Halvagar,
Z. H. Fard and S. Dehnen, Chem.–Eur. J., 2011, 17, 4371.
and idealized D2d symmetry; due to conformational freedom of the
non-coordinating pyridine rings, this is reduced in the crystal struc-
tures to S4 symmetry in 4, and no symmetry (C1) in 5 and 6. The central
part of the molecules consists of four Sn2ZnS3 and four SnZn2S3 six-
membered rings that are annealed, to form a sulfur-capped, cylinder-
shaped [Sn4Zn4S10] unit, with an inner volume of approximately
1.95 Å3. Four further Zn atoms and one halide ligand per Zn atom
complete an [Sn4Zn8X8S10] inorganic core.
¨
¨
8 C. Pohlker, I. Schellenberg, R. Pottgen and S. Dehnen, Chem. Commun.,
2010, 46, 2605.
´
9 (a) Z. H. Fard, R. Clerac and S. Dehnen, Chem.–Eur. J., 2010,
16, 2050; (b) C. Zimmermann, C. E. Anson and S. Dehnen,
´
J. Cluster Sci., 2007, 18, 618; (c) Z. H. Fard, M. Hołynska and
S. Dehnen, Inorg. Chem., 2010, 49, 5748–5752.
10 (a) S. Ahmar, D. G. MacDonald, N. Vijayaratnam, T. L. Battista,
M. S. Workentin and J. F. Corrigan, Angew. Chem., Int. Ed., 2010,
49, 4422; (b) D. G. MacDonald, C. Ku¨bel and J. F. Corrigan, Inorg. Chem.,
All Sn atoms have three sulfur neighbors and bind to an organic
moiety; as in 2, they show c.n. = 5 due to back-coordination by one
of the N atoms of the ketazine group. The Zn atoms are all
coordinated by one halide ligand. Four of the Zn atoms are part
of the purely inorganic equator of the cluster and have a ZnS3X
coordination environment. The other four Zn atoms are coordi-
nated by one pyridine N-donor atom of one of the two bispyridine
ligands attached to the adjacent Sn atoms, and by the second N
atom of the ketazine group, resulting in a ZnSXN2 coordination. As
for the formation of the equilibrium between compounds 1+, 2 and
3, precipitation of insoluble powders indicates the formation of tin
sulfide as a by-product during the formation of 4–6. Based on the
observation of a brown powder in the first reaction and an orange-
yellow powder in this case, we assign the by-products to the
¨
2011, 50, 3252; (c) D. G. MacDonald, A. Eichhofer, C. F. Campana and
J. F. Corrigan, Chem.–Eur. J., 2011, 17, 5890; (d) A. I. Wallbank, A. Borecki,
N. J. Taylor and J. F. Corrigan, Organometallics, 2005, 24, 788.
11 (a) W. S. Sheldrick, Z. Anorg. Allg. Chem., 1988, 562, 23;
(b) W. S. Sheldrick and H. G. Braunbeck, Z. Naturforsch., B, 1990,
46, 1643; (c) K. Merzweiler and L. Weisse, Z. Naturforsch., B, 1990,
46, 971; (d) K. Merzweiler and H. Kraus, Z. Naturforsch., B, 1993,
48, 1009; (e) C. Wagner, R. Hauser and K. Merzweiler, Phosphorus,
Sulfur Silicon Relat. Elem., 2001, 168, 191.
12 (a) R. Sharma and D. Rawat, J. Inorg. Organomet. Polym., 2011,
21, 619; (b) B. F. Abrahams, T. A. Hudson and R. Robson,
Chem.–Eur. J., 2006, 12, 7095; (c) C.-Y. Wong, G. S. M. Tong,
C.-M. Che and N. Zhu, Angew. Chem., Int. Ed., 2006, 45, 2694;
(d) P. J. Steel and C. J. Sumby, Dalton Trans., 2003, 4505;
(e) E. Katsoulakou, N. Lalioti, C. P. Raptopoulou, A. Terzis, E. Manessi-
Zoupa and S. P. Perlepes, Inorg. Chem. Commun., 2002, 5, 719.
compounds SnS and SnS2, respectively, which is also in agreement 13 M. J. Manos, R. G. Iyer, E. Quarez, J. H. Liao and M. G. Kanatzidis,
Angew. Chem., Int. Ed., 2005, 44, 3552.
14 (a) O. Palchik, R. G. Iyer, C. G. Canlas, D. P. Weliky and M. G. Kanatzidis,
with the spectroscopic findings (see ESI†).
The [Sn4Zn8S10] unit of 4–6 differs from all known clusters and
Z. Anorg. Allg. Chem., 2004, 630, 2237; (b) O. Palchik, R. G. Iyer, J. H. Liao
frameworks that comprise the same elemental combination. Kanat-
zidis and co-workers reported P1-type supertetrahedral clusters as
part of isostructural frameworks in K5ASn[Zn4Sn4S17] (A = K, Rb,
Cs),13 and as discrete anions in K10Zn4Sn4S17.14 Discrete T3-type
and M. G. Kanatzidis, Inorg. Chem., 2003, 42, 5052.
´
15 C. Zimmermann, C. E. Anson, F. Weigend, R. Clerac and S. Dehnen,
Inorg. Chem., 2005, 44, 5686.
16 (a) G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112; (b) G. M.
¨
Sheldrick, SHELXL-2013, University of Gottingen, Germany, 2013.
c
6592 Chem. Commun., 2013, 49, 6590--6592
This journal is The Royal Society of Chemistry 2013