Paper
Dalton Transactions
6
mated k
2
at 50 °C from the Eyring plot was 8 × 10− M−1 s−1
,
2 H. Schindelin, C. Kisker, J. Hilton, K. V. Rajagopalan and
D. C. Rees, Science, 1996, 272, 1615–1621.
3 N. Cobb, C. Hemann, G. A. Polsinelli, J. P. Ridge,
A. G. McEwan and R. Hille, J. Biol. Chem., 2007, 282,
35519–35529.
4 K. E. Johnson and K. V. Rajagopalan, J. Biol. Chem., 2001,
276, 13178–13185.
5 A. S. McAlpine, A. G. McEwan and S. Bailey, J. Mol. Biol.,
1998, 275, 613–623.
6 S. Mondal and P. Basu, Inorg. Chem., 2001, 40, 192–193.
7 R. H. Holm, E. I. Solomon, A. Majumdar and
A. Tenderholt, Coord. Chem. Rev., 2011, 255, 993–
1015.
8 F. J. Hine, A. J. Taylor and C. D. Garner, Coord. Chem. Rev.,
2010, 254, 1570–1579.
which was much smaller than the present system. In another
IV
t
case, a siloxomolybdenum(IV) complex, (Et
(COOCH ], was reported to cleanly react with Me
below −15 °C; however, the reaction with DMSO was too slow
4
N)[Mo (OSi BuPh
2
)-
{
S
2
C
2
3
)
2
}
2
3
NO
1
2
to be monitored. In addition, a monooxomolybdenum(IV)
complex containing 4,5-dimethoxy-1,2-benzenedithiolate
ligands was reported to catalyze the reduction of DMSO by
1
3
Ph
3
P; however, a large excess of DMSO as a solvent was used.
The enhanced reactivity of the desoxomolybdenum(IV)
complex in the present system is considered to be caused by
the stabilization of the DMSO-bound transient structure owing
to bulky hydrophobic substituents. The DFT calculations of
desoxomolybdenum(IV) complexes indicated that the distortion
of the geometry and trigonal-prismatic transition state are
important to promote the attack of DMSO cis to the alkoxo
9 V. W. L. Ng, M. K. Taylor and C. G. Young, Inorg. Chem.,
2012, 51, 3202–3211.
1
7
ligand. In our theoretical investigation of monooxomolybde-
num(IV) complexes, we have shown that the four bulky ligands 10 P. Basu and S. J. N. Burgmayer, Coord. Chem. Rev., 2011,
stabilize the transient distorted structure and promote the very 255, 1016–1038.
fast OAT reaction of Me NO through a direct cis-attack 11 H. Sugimoto, S. Tatemoto, K. Suyama, H. Miyake,
3
1
9
mechanism.
Furthermore, the hydrophobic microenvironment around
R. P. Mtei, S. Itoh and M. L. Kirk, Inorg. Chem., 2010, 49,
5368–5370.
the active center is found to be maintained regardless of the 12 A. Majumdar and S. Sarkar, Coord. Chem. Rev., 2011, 255,
solvent polarity. These results indicate that desoxomolybde- 1039–1054.
num(IV) complex 1 ensures the substrate-access pocket for 13 A. Döring, C. Fischer and C. Schulzke, Z. Anorg. Allg. Chem.,
DMSO.
2013, 639, 1552–1558.
1
1
4 J. P. Donahue, C. R. Goldsmith, U. Nadiminti and
R. H. Holm, J. Am. Chem. Soc., 1998, 120, 12869–
1
2881.
Conclusions
5 B. S. Lim, J. P. Donahue and R. H. Holm, Inorg. Chem.,
2000, 39, 263–273.
Toluene-soluble desoxomolybdenum(IV), monooxomolybde-
num(VI), and monooxotungsten(VI) complexes (1–3, respect- 16 B. S. Lim and R. H. Holm, J. Am. Chem. Soc., 2001, 123,
ively) containing bulky hydrophobic groups were synthesized. 1920–1930.
The simple modification of an oxo ligand into a siloxo ligand 17 Y. Ha, A. L. Tenderholt, R. H. Holm, B. Hedman,
achieved the reduction of not only Me NO but also DMSO.
Moreover, the reduction of DMSO was accelerated compared to
that of the other complexes.
The rate of the OAT reaction of DMSO was independent of
the polarity of the reaction media, which suggests the for-
K. O. Hodgson and E. I. Solomon, J. Am. Chem. Soc., 2014,
136, 9094–9105.
18 K. Baba, T. Okamura, C. Suzuki, H. Yamamoto,
T. Yamamoto, M. Ohama and N. Ueyama, Inorg. Chem.,
2006, 45, 894–901.
3
mation of a hydrophobic microenvironment around the active 19 T. Okamura, Y. Ushijima, Y. Omi and K. Onitsuka, Inorg.
center. The combination of the bulkiness of CAr groups and a Chem., 2013, 52, 381–394.
hydrophobic microenvironment promoted the OAT reaction of 20 K. Baba, T. Okamura, H. Yamamoto, T. Yamamoto,
3
the biological substituent, DMSO, by forming the confined
space for substrate binding.
M. Ohama and N. Ueyama, Chem. Lett., 2005, 34, 44–45.
21 Y. Hasenaka, T. Okamura, M. Tatsumi, N. Inazumi and
K. Onitsuka, Dalton Trans., 2014, 43, 15491–15502.
2
2 C. Lorber, J. P. Donahue, C. A. Goddard, E. Nordlander and
R. H. Holm, J. Am. Chem. Soc., 1998, 120, 8102–8112.
3 A. Altomare, G. Cascarano, C. Giacovazzo and
A. Guagliardi, J. Appl. Crystallogr., 1994, 27, 435–436.
Acknowledgements
2
This work was supported by JSPS KAKENHI Grant Number
2
6410072.
24 P. T. Beurskens, G. Admiraal, H. Behm, G. Beurskens,
J. M. M. Smits and C. Smykalla, Z. Kristallogr., 1991 (Suppl. 4),
99.
2
5 G. M. Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystal-
logr., 2008, 64, 112–122.
Notes and references
1
R. Hille, J. Hall and P. Basu, Chem. Rev., 2014, 114, 3963– 26 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
4
038.
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr.,
6266 | Dalton Trans., 2015, 44, 6260–6267
This journal is © The Royal Society of Chemistry 2015