284
A.W. Baker et al. / Journal of Fluorine Chemistry 102 (2000) 279±284
[2] S. Brunet, B. Requieme, E. Matouba, J. Barrault, M. Blanchard, J.
Catal. 152 (1995) 70.
allowed to react at 673 K for 1 h. After cooling to room
temperature, the volatile material was condensed onto moist
NaOH pellets, the process being repeated until there was no
evidence for either HCl or HF in the IR spectrum of the
fraction. Analysis by GC indicated that the ratio CF3CH2Cl:
CF3CH2F was ꢁ95 : 5. Longer reaction times led to product
mixtures containing higher proportions of CF3CH2F.
Other catalysts, partially crystalline chromias both
un¯uorinated and ¯uorinated and zinc(II)-doped ¯uorinated
chromias [13], were evaluated for use in this reaction.
Generally they were less active, although pre-¯uorination
was bene®cial for the partially crystalline materials as was
Zn(II) doping. The [36Cl]- count rates of CF3CH236Cl
[3] S. Brunet, B. Requieme, E. Colnay, J. Barrault, M. Blanchard, Appl.
Catal. B 5 (1995) 305.
[4] A. Kohne, E. Kemnitz, J. Fluor. Chem. 75 (1995) 103.
[5] S. Brunet, B. Boussand, A. Rousset, D. Andre, Appl. Catal. A 168
(1998) 57.
[6] T. Skapin, J. Mater. Chem. 5 (1995) 1215.
[7] J.N. Armor, Chem. Mater. 6 (1994) 730.
[8] H. Kim, H.S. Kim, B.G. Lee, H. Lee, S. Kim, J. Chem. Soc. Chem.
Commun. (1995) 2383.
[9] H.-d. Quan, Z. Li, Z.-x. Zhao, H.-e. Yang, J. Lu, J.-g. Ren, S.-k.
Chen, H.-f. Li, H.-l. Li, Appl. Catal. B 8 (1996) 209.
[10] J.A. Lu, H. Yang, S.K. Chen, L. Shi, J.G. Pen, H.L. Li, S.Y. Peng,
Catal. Lett. 41 (1996) 221.
[11] H. Lee, H.D. Jeong, Y.S. Chung, H.G. Lee, M.J. Chung, S. Kim, H.S.
Kim, J. Catal. 169 (1997) 307.
1
prepared in this way were ca. 4000 count min as deter-
mined by the Geiger MuÈller direct monitoring method [25]
at 100 Torr pressure.
[12] Y.S. Chung, H. Lee, H.D. Jeong, Y.K. Kim, H.G. Lee, H.S. Kim, S.
Kim, J. Catal. 175 (1998) 220.
[13] D.W. Bonniface, J.R. Fryer, P. Landon, J.D. Scott, W.D.S. Scott, M.J.
Watson, G. Webb, J.M. Winfield, Green Chem. 1 (1999) 9.
[14] F.I. Aigbirhio, V.W. Pike, S.L. Waters, R.J.N. Tanner, J. Fluor. Chem.
70 (1995) 279.
3.3. Computational studies
Preliminary geometries for all compounds, CF3CH2F,
CF3CH2Cl, CF2=CH2, CF2=CHCl and HF, were calculated
semiempirically (PM3) [26] in C1 symmetry with the
program package HyperChem [27] and were optimized to
[15] A. Bendada, D.W. Bonniface, F. McMonagle, R. Marshall, C.
Shortman, R.R. Spence, J. Thomson, G. Webb, J.M. Winfield, N.
Winterton, Chem. Commun. (1996) 1947.
[16] E. Kemnitz, K.-U. Niedersen, J. Catal. 155 (1995) 283.
[17] K.-U. Niedersen, E. Schreier, E. Kemnitz, J. Catal. 167 (1997) 210.
[18] E. Kemnitz, K. -U Niedersen, J. Fluor. Chem. 79 (1996) 111.
[19] J. Kijowski, J.M. Winfield, G. Webb, Appl. Catal. 27 (1986) 181.
[20] L. Rowley, J. Thomson, G. Webb, J.M. Winfield, A. McCulloch,
Appl. Catal. A 79 (1991) 89.
CS (CF3CH2F, CF3CH2Cl, CF2=CH2, CF2=CHCl) or C
1n
(HF) symmetry, respectively. The structures, vibrational
frequencies and zero point energies (zpe) for all molecules
were then optimized within Cs or C1n symmetry with the ab
initio method at the RHF level of theory at the 6-311G(d,p)
basis with the program package Gaussian 98 (Revision A.3)
[28]. Electron correlation was taken into consideration
(structure optimization, vibrational frequencies and zpe
values at the 6-311G(d,p) basis) by applying perturbation
theory according to Mùller-Plesset (MP) which takes higher
excitations into account by using a perturbation operator and
È
[21] T.M. Klapotke, A. Schulz, Quantenmechanische Methoden in der
Hauptgruppenchemie, Spektrum, Heidelberg, 1996, p.92.
È
[22] T.M. Klapotke, A. Schulz, R.D. Harcourt, Quantum Chemical
Methods in Main-Group Chemistry, Wiley, Chichester, 1998, p. 89.
[23] J.B. Foresman, A. Frisch, Exploring Chemistry with Electronic
Structure Methods, 2nd Edition, Gaussian, Pittsburgh, USA, 1993.
[24] R.N. Maxson, Inorg. Synth. 1 (1939) 147.
[25] A.S. Al-Ammar, G. Webb, J. Chem. Soc. Faraday Trans. 1 74 (1978)
195.
È
using Rayleigh-Schrodinger perturbation theory to obtain a
[26] J.J.P. Stewart, J. Comp. Chem. 10 (1989) 221.
[27] HyperChem 5.1, Molecular Visualization and Simulation Program
Package, Hypercube,Gainesville, FL 32601, 1998.
better wave function and energies (second order, notation
MP2) [29±32]. In addition, single point calculations were
performed for all species at the MP4(SDQ) level of theory
which accounts for single, double and quadruple substitu-
tions [33] employing a 6-311G(d,p) basis.
[28] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuscria, M.A. Robb,
J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E.
Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels,
K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.
Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K.
Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslows-
ki, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-
Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe,
P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C.
Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98,
Revision A3, Gaussian, Inc., Pittsburgh PA, 1998.
Acknowledgements
We are grateful to EPSRC, ICI Klea, the University of
Munich and the Fonds der Chemischen Industrie for support
of this work. Staff at the John Mallard Scottish PET Centre,
Aberdeen are thanked for assistance with [18F] preparation.
[29] C. Mùller, M.S. Plesset, Phys. Rev. 46 (1934) 618.
[30] R.J. Bartlett, D.M. Silver, J. Chem. Phys. 62 (1975) 3258.
[31] J.A. Pople, J.S. Binkley, R. Seeger, Int. J. Quant. Chem. Quant.
Chem. Symp. 10 (1976) 1.
References
[32] J.A. Pople, R. Seeger, R. Krishnan, Int. J. Quant. Chem. Quant.
Chem. Symp. 11 (1977) 149.
[1] D.M.C. Kavanagh, T.A. Ryan, B. Mile, J. Fluor. Chem. 64 (1993)
167.
[33] R. Krishnan, J.A. Pople, Int. J.Quant. Chem. 14 (1978) 91.