scan rate 100 mV s21. Values for Eox and Ered were calculated as Ep 2 0.03
and Ep + 0.03 V, respectively, in the cases of irreversible processes.
§ Olefin 1 was prepared in 95% yield by Wittig–Horner reaction of PhCHO
and Ar2CH-PO(OMe)2/BunLi in THF, and its physical data are identical to
those reported in ref. 9. Stereochemistry of 22+ was determined to be dl by
X-ray analysis of I32 salt.¶ All new compounds show satisfactory analytical
values. lmax (MeCN)/nm (log e): 1, 345 sh (4.38), 322 (4.43), 266 (4.30),
255 (4.28); 22+ (I32)2, 619 (4.83), 595 (4.84), 423 (4.47), 361 (4.80), 293
(5.04); 3, 397 sh (4.27), 345 sh (4.59), 312 (4.71), 277 (4.65); 42+ (I3 )2, 679
2
(4.86), 545 (4.91), 426 (4.48), 358 (4.83), 292 (5.14).†
¶ Crystal data for 22+ (I32)2: C48H52N4I6, M 1446.39, monoclinic, P21/n, a
= 10.054(2), b = 17.393(3), c = 28.880(5) Å, b = 92.970(9)°, U =
5043(1) Å3, Dc (Z = 4) = 1.905 g cm21, m(Mo-Ka) = 37.43 cm21, T =
123 K. The final R value is 0.062 for 4842 independent reflections with I >
3sI and 263 parameters. For 3: C48H50N4, M 682.95, monoclinic, P21/c, a
= 14.612(3), b = 16.076(2), c = 17.1807(7) Å, b = 91.792(1)°, U =
4034.0(10) Å3, Dc (Z = 4) = 1.124 g cm21, m(Mo-Ka) = 0.66 cm21, T =
110 K. The final R value is 0.065 for 3614 independent reflections with I >
3sI and 469 parameters. For 42+ (I32)2: C48H50N4I6, M 1444.38,
monoclinic, P21/n, a = 9.6884(8), b = 23.432(1), c = 22.8948(4) Å, b =
107.5794(4)°, U = 4954.9(5) Å3, Dc (Z = 4) = 1.936 g cm21, m(Mo-Ka)
= 37.99 cm21, T = 97 K. The final R value is 0.026 for 7707 independent
reflections with I > 3sI and 526 parameters. CCDC/164961–164963. See
other electronic format.
Fig. 1 (a) ORTEP drawing of diene 3 determined by X-ray at 2163 °C.
Torsion angle of diene unit is 59.1°. Two aryl groups are arranged in a face-
to-face manner (dihedral angle 7.9°). Short intramolecular C…C contacts
(3.21 and 3.29 Å) are shown by dotted line. (b) ORTEP drawing of dication
42+ determined by X-ray at 2176 °C on I32 salt. The four carbon atoms of
C+–CNC–C+ lie nearly on the same plane (the largest deviation from the
least-squares plane, 0.09 Å).
∑ Similarly,
2,2A-bis[2,2-bis(4-dimethylaminophenyl)ethenyl]biphenyl
undergoes oxidative cyclization to give another isolable 1,4-dication framed
in a 9,10-dihydrophenanthrene skeleton, which will be reported in a full
paper.
1 P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism:
Fundamentals and Applications, VHC, Weinheim, 1995.
2 (a) S. Hünig, M. Kemmer, H. Wenner, F. Barbosa, G. Gescheidt, I. G.
Perepichka, P. Bäuerle, A. Emge and K. Peters, Chem. Eur. J., 2000, 6,
2618; (b) S. Hünig, M. Kemmer, H. Wenner, I. F. Perepichka, P.
Bäuerle, A. Emge and G. Gescheid, Chem. Eur. J., 1999, 5, 1969.
3 V. Balzani, M. Gómez-López and J. F. Stoddart, Acc. Chem. Res., 1998,
31, 405; J.-P. Sauvage, Acc. Chem. Res., 1998, 31, 611; P. L. Boulas, M.
Gómez-Kaifer and L. Echegoyen, Angew. Chem., Int. Ed. Engl., 1998,
37, 216.
4 K. Deuchert and S. Hünig, Angew. Chem., Int. Ed. Engl., 1978, 17,
875.
5 R. Mayer and K. Kröber, J. Prakt. Chem., 1974, 316, 907; U. Schöberl,
J. Salbech and J. Daub, Adv. Mater., 1992, 4, 41; D. Lorcy, R. Carlier,
A. Robert, A. Tallec, P. Le Maguerés and L. Ouahav, J. Org. Chem.,
1995, 60, 2443; P. Hapiot, D. Lorcy, A. Tallec, R. Carlier and A. Robert,
J. Phys. Chem., 1996, 100, 14 823; A. Benahmed-Gasmi, P. Frére, J.
Roncali, E. Elandaloussi, J. Ordun, J. Garin, M. Jubault and A. Gorgues,
Tetrahedron Lett., 1995, 36, 2983; A. J. Moore, M. R. Bryce, P. J.
Skabara, A. S. Datsanov, L. M. Goldenberg and J. A. K. Howard,
J. Chem. Soc., Perkin Trans. 1, 1997, 3443; P. Hascoat, D. Lorcy, A.
Robert, R. Carlier, A. Tallec, K. Boubekeur and P. Batail, J. Org. Chem.,
1997, 62, 6086.
6 A. Ohta and Y. Yamashita, J. Chem. Soc., Chem. Commun., 1995, 1761;
Y. Yamashita, M. Tomura, M. B. Zaman and K. Imaeda, Chem.
Commun., 1998, 1657.
7 T. Suzuki, J. Nishida and T. Tsuji, Angew. Chem., Int. Ed. Engl., 1997,
36, 1329; Chem. Commun., 1998, 2193; T. Suzuki, H. Takahashi, J.
Nishida and T. Tsuji, Chem. Commun., 1998, 1331; T. Suzuki, M.
Kondo, T. Nakanura, T. Fukushima and T. Miyashi, Chem. Commun.,
1997, 2325; T. Suzuki, T. Yoshino, M. Ohkita and T. Tsuji, J. Chem.
Soc., Perkin Trans. 1, 2000, 3417; T. Suzuki, J. Nishida, M. Ohkita and
T. Tsuji, Angew. Chem., Int. Ed. Engl., 2000, 39, 1804.
8 T. Suzuki, H. Shiohara, M. Monobe, T. Sakimura, S. Tanaka, Y.
Yamashita and T. Miyashi, Angew. Chem., Int. Ed. Engl., 1992, 31, 455;
T. Suzuki, Y. Yoshino, J. Nishida, M. Ohkita and T. Tsuji, J. Org.
Chem., 2000, 65, 5514.
9 M. Matsui, M. Tsuge, K. Shibata and H. Muramatsu, Bull. Chem. Soc.
Jpn., 1994, 67, 1753.
10 M. Horner and S. Hünig, J. Am. Chem. Soc., 1977, 99, 6122; R. Rathore,
P. Le Magueres, S. V. Lindeman and J. K. Kochi, Angew. Chem., Int.
Ed. Engl., 2000, 39, 809.
Fig. 2 Two modes of electrochromism. a) Mode-1; changes in the UV-VIS
spectrum of 1 (3.5 mL, 1.1 3 1024 mol dm23 in MeCN) upon constant-
current electrochemical oxidation (32 mA, 4 min interval) to 22+. (b) Mode-
2; changes in the UV-VIS spectrum of 3 (3.5 mL, 2.6 3 1025 mol dm23 in
MeCN) upon constant-current electrochemical oxidation (31 mA, 2 min
interval) to 42+. Note the presence of isosbestic points in both trans-
formation.
(Fig. 2), which opens up a way to construct a molecular device
where two independent inputs (e2 and H+) are transduced into
a unified two-dimensional output (e vs. l in UV-VIS).
This work has revealed that the 1,4-dication B in Scheme 1
can exist as stable species (as in 22+)∑ when deprotonation is not
feasible due to steric shielding in B and/or prohibited full-
conjugation in diene C by twisted geometry. In such an
appropriate case, all of the species of A–D (as in 1–42+) are
stable enough to realize the dual-mode optical response. The
present electrochromism modulated by proton transfer provides
a new successful entry into the proton–electron cooperating
functions.11
This work was supported by the Ministry of Education,
Science, and Culture, Japan (No. 13440184). Financial support
from the Iwatani Naoji Foundation is gratefully acknowledged.
We thank Professor Tamotsu Inabe (Hokkaido University) for
use of the X-ray structure analysis system.
11 K. Nakasuji, K. Sugiura, J. Toyoda, Y. Morita, H. Okamoto, K.
Okaniwa and T. Mitani, Mol. Cryst. Liq. Cryst., 1992, 216, 213; G. De
Santis, L. Fabbrizzi, M. Licchelli and P. Pallavicini, Inorg. Chim. Acta,
1994, 225, 239; V. A. Ozeryanskii, A. F. Pozharskii, G. R. Milgizina and
S. T. Howard, J. Org. Chem., 2000, 65, 7707.
Notes and references
‡ All of the redox potentials shown in the text were measured under the
same conditions: E/V vs. SCE, 0.1 mol Et4NClO4 in MeCN, Pt electrode,
Chem. Commun., 2001, 1574–1575
1575