RSC Advances
Paper
evolution of CF bonds, the semi-ionic –CF]CF– units remained
dominant for all investigated uorinated samples.
The diversity of CF bonds has a direct impact on physico-
chemical, electronic or electrical properties. The presence of
9 M. Kurban, Optik, 2018, 172, 295.
10 X. Wang, H. R. Harris, K. Bouldin, H. Temkin,
S. Gangopadhyay, M. D. Strathman and M. West, J. Appl.
Phys., 2000, 87, 621.
semi-ion bonds translates directly into the electrical properties 11 M. Adamska and U. Narkiewicz, J. Fluorine Chem., 2017, 200,
of the materials tested. Fluorinated N–graphyne can stimulate 179.
cells to grow. Interestingly, it seems that the type of CF groups 12 W. Zhang, P. Bonnet, M. Dubois, C. P. Ewels, K. Guerin,
have an inuence on electrochemical properties. In our case,
the increase in the share of CF –CF groups have contributed to
2
E. Petit, J. Y. Mevellec, L. Vidal, D. A. Ivanov and
A. Hamwi, Chem. Mater., 2012, 24, 1744.
2
2
a decrease in the capacity of Li-ion batteries.
13 J. Szala-Bilnik, M. F. Costa Gomes and A. A. H. Padua, J. Phys.
Chem. C, 2016, 120, 19396.
Concluding, results presented in this study proved that
uorination of N–graphynes is an effective way to receive 14 I. P. Asanov, L. G. Bulusheva, M. Dubois, N. F. Yudanov,
versatile materials with desired properties potentially appli-
cable in many eld of science and industry.
A. V. Alexeev, T. L. Makarova and A. V. Okotrub, Carbon,
2013, 59, 518.
15 D. D. Chronopoulos, A. Bakandritsos, M. Pykal, R. Zboril and
M. Otyepka, Appl. Mater. Today, 2017, 9, 60.
Conflicts of interest
16 F.-G. Zhao, G. Zhao, X.-H. Liu, C.-W. Ge, J.-T. Wang, B.-L. Li,
Q.-G. Wang, W.-S. Li and Q.-Y. Chen, J. Mater. Chem. A, 2014,
There are no conicts to declare.
2
, 8782.
7 W. Feng, P. Long, Y. Feng and Y. Li, Adv. Sci., 2016, 3,
500413.
1
Acknowledgements
1
This research has been nanced from the Sonata Bis project 18 X. Shen, J. He, K. Wang, X. Li, X. Wang, Z. Yang, N. Wang,
(
(
2016/22/E/ST5/00529) operated by the National Science Centre
NCN). A. Filip would like to thank the National Science Centre 19 W. Xiao, H. Kang, Y. Lin, M. Liang, J. Li, F. Huang, Q. Feng,
Y. Zheng and Z. Huang, RSC Adv., 2019, 9, 18377.
0696). K. J. Fijałkowski acknowledges The National Centre 20 G. Liu, Fluorination of Alkenes and Alkynes for Preparing
Y. Zhang and C. Huang, ChemSusChem, 2019, 12, 1342.
for nancial support within Sonata project (2017/26/D/NZ4/
0
for Research and Development (TANGO2/340584/NCBR/2017)
for nancial support M. K. and B. H. acknowledge The
Alkyl Fluorides, in Fluorination. Synthetic Organouorine
Chemistry, ed. J. Hu and T. Umemoto, Springer, Singapore,
2018.
National
Centre
for
Research
and
Development
(
TECHMATSTRATEG1/347431/14/NCBR/2018) for nancial 21 H.-C. Weiss, D. Bl ¨a ser, R. Boese, B. M. Doughan and
support. Zoran Mazej acknowledges the Slovenian Research M. M. Haley, ChemComm, 1997, 18, 1703.
Agency for nancial support within Research Program P1-0045 22 Z. H. Hei, G. L. Song, C.-Y. Zhao, W. Fan and Mu-H. Huang,
Inorganic Chemistry and Technology. Spectral measurements RSC Adv., 2016, 6, 92443.
were conducted on Center for Preclinical Research and Tech- 23 L. Wachowski, J. W. Sobczak and M. Hofman, Appl. Surf. Sci.,
nology (CePT) infrastructure nanced by the European Union—
2007, 253, 4456.
the European Regional Development Fund within Operational 24 M. Seredych, A. Szczurek, V. Fierro, A. Celzard and
Program “Innovative Economy” for 2007–2013 POIG.02.02.00- T. J. Bandosz, ACS Catal., 2016, 6, 5618.
4-024/08-00. DFT calculations were performed at the Wro- 25 G. Nanse, E. Papirer, P. Fioux, F. Moguet and A. Tressaud,
1
claw Centre for Networking and Supercomputing. We thank
Carbon, 1997, 35, 175.
prof. M. Mazur (CNBCh UW) for enabling photoluminescence 26 X. Wang, Y. Dai, J. Gao, J. Huang, B. Li, C. Fan, J. Yang and
measurements.
X. Liu, ACS Appl. Mater. Interfaces, 2013, 5, 8294.
27 I. P. Asanov, L. G. Bulusheva, M. Dubois, N. F. Yudanov,
A. V. Alexeev, T. L. Makarova and A. V. Okotrub, Carbon,
Notes and references
2013, 59, 518.
1
R. Baughman, H. Eckhardt and M. Kertesz, J. Chem. Phys., 28 R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell,
1
987, 87, 6687.
P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson,
H.-M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub,
I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov and
A. K. Geim, Small, 2010, 6, 2877.
2
3
M. Inagaki and F. Y. Kang, J. Mater. Chem. A, 2014, 2, 13193.
C. Xie, N. Wang, X. Li, G. Xu and C. Huang, Chem.–Eur. J.,
2020, 26, 569.
4
5
6
Y. Song, X. Li, Z. Yang, J. Wang, C. Liu, C. Xie, H. Wang and 29 A. Ferrari and D. M. Basko, Nat. Nanotechnol., 2013, 8, 235.
C. Huang, Chem. Commun., 2019, 55, 6571.
30 J. D. Bernal, Proc. R. Soc. Edinburgh, 1924, 106, 749.
T. Chen, W. Q. Li, X. J. Chen, Y. Z. Guo, W. B. Hu, W. J. Hu, 31 V. Caldas, F. G. Morin and G. R. Brown, Magn. Reson. Chem.,
Y. A. Liu, H. Yang and K. Wen, Chem.–Eur. J., 2020, 26, 2269. 1994, 32, 72.
C. Yang, Y. Li, Y. Chen, Q. Li, L. Wu and X. Cui, Small, 2019, 32 J. Giraudet, M. Dubois, K. Guerin, J. P. Pinheiro, A. Hamwi,
1
5, 1804710.
W. E. E. Stone, P. Pirotte and F. Masin, J. Solid State Chem.,
2005, 178, 1262.
7
8
I. Muz and M. Kurban, J. Alloys Compd., 2020, 842, 155983.
I. Muz and M. Kurban, J. Alloys Compd., 2019, 802, 25.
40028 | RSC Adv., 2020, 10, 40019–40029
This journal is © The Royal Society of Chemistry 2020