C O M M U N I C A T I O N S
We tested the thermal stability of 6b and compared its specificity
with a commonly used commercial product for separating histidine-
tagged proteins. As shown in Figure 2B, after being boiled in Tris
buffer (pH ) 7.9) for 20 min, the specificity and efficiency of 6b
remain unaffectedselectrophoresis traces show that the fractions
washed from the boiled 6b contain only the histidine-tagged protein,
the same as the fractions washed from the freshly made 6b.
Moreover, the specificity of 6b for the histidine-tagged proteins is
much higher than the commercial HiTrap affinity column that is
based on microbeads: after the affinity column and 6b were bathed
with cell lysate and washed under the same conditions, the fraction
washed from the affinity column contains many other proteins,
while the fractions from 6b contain only the histidine-tagged protein.
In conclusion, we have demonstrated for the first time that dopamine
serves as a robust anchor on the surface of the iron oxide shell of
a magnetic nanoparticle, and the resulting nanostructure exhibits
high specificity for protein separation and exceptional stability to
heating and high salt concentration. Our simple synthetic strategy
should provide a useful way to link other biofunctional molecules
to other metal oxide surfaces (e.g., TiO212 and Fe3O4) that also have
high affinity to DA7 and offer new opportunities for the biological
applications of metal oxide nanoparticles.
Figure 1. Transmission electron micrograph (TEM) images of (A) Co/
Fe2O3, (B) 5a, (C) SmCo5.2/Fe2O3, and (D) 5b. (E) Magnetism of 6a, 6a-
GFP, 6b, and 6b-GFP at the ambient conditions.10
Acknowledgment. This work was partially supported by RGC
(Hong Kong), HIA (HKUST), and a DuPont Young Faculty Grant
(to B.X.).
Figure 2. SDS/PAGE analysis of the purity of the proteins. (A) Cell lysate
(lane 1), GFP standard (lane 2), molecular weight marker (lane 3), the
fractions from freshly made SmCo5.2/Fe2O3-NTA by washing with
imidazole elutions (10 mM, lane 4; 500 mM, lane 5), fractions from the
freshly made Co/Fe2O3-NTA using imidazole elutions (10 mM, lane 6;
500 mM, lane 7). (B) Cell lysate (lane 1), GFP standard (lane 7), the
molecular weight marker (lane 8), the fractions washed from the freshly
made 6b (lanes 2 and 3), boiled 6b (lanes 4 and 5), and the microbeads of
the commercial HiTrap affinity column (lanes 6 and 9). The concentrations
of imidazole are 10 mM (lanes 2, 4, and 6) and 500 mM (lanes 3, 5, 9). All
imidazole elutions also contain 20 mM Na2HPO4 and 0.5 M NaCl.
Supporting Information Available: The details of the synthesis
and characterization of 6 and the separation of histidine-tagged proteins
of reused 6. This material is available free of charge via the Internet at
References
(1) (a) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science
2000, 287, 1989. (b) Puntes, V. F.; Zanchet, D.; Erdonmez, C. K.;
Alivisatos, A. P. J. Am. Chem. Soc. 2002, 124, 12874. (c) Zhang, Z. J.;
Wang, Z. L.; Chakoumakos, B. C.; Yin, J. S. J. Am. Chem. Soc. 1998,
120, 1800. (d) Weller, D.; Moser, A. IEEE Trans. Magn. 1999, 35, 4423.
(e) Tripp, S. L.; Pusztay, S. V.; Ribbe, A. E.; Wei, A. J. Am. Chem. Soc.
2002, 124, 7914. (f) Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.;
Rice, P. M.; Wang, S. X.; Li, G. X. J. Am. Chem. Soc. 2004, 126, 273.
(g) Sun, S. H.; Anders, S.; Hamann, H. F.; Thiele, J. U.; Baglin, J. E. E.;
Thomson, T.; Fullerton, E. E.; Murray, C. B.; Terris, B. D. J. Am. Chem.
Soc. 2002, 124, 2884. (h) Majetich, S. A.; Artman, J. O.; McHenry, M.
E.; Nuhfer, N. T.; Staley, S. W. Phys. ReV. B 1993, 48, 16845. (i) Gu, H.
W.; Zheng, R. K.; Zhang, X. X.; Xu, B. J. Am. Chem. Soc. 2004, 126,
5664. (j) Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Science 2001,
291, 2115.
Magnetic measurements reveal the superparamagnetic behavior
(no hysteretic behavior, Figure 1E) of 6a and 6b at 298 K before
and after binding to the protein, respectively. Before binding to
the protein (6xHis-GFP), the magnetization of 6a is 14.5 emu/g at
3000 G, and the magnetization of 6b is 18 emu/g at 3000 G. After
binding to the proteins, the magnetization of 6a-GFP is 2.2 emu/g
at 3000G, while that of 6b-GFP is 10.6 emu/g. Both magnetizations
are sufficient to allow the magnetic nanoparticle-connected proteins
to be attracted by a small magnet (with a surface field of ∼4000
G).
(2) (a) Park, S. J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K.; Hyeon, T. J. Am.
Chem. Soc. 2000, 122, 8581. (b) Hyeon, T. Chem. Commun. 2003, 927.
(3) (a) Decker, S.; Klabunde, K. J. J. Am. Chem. Soc. 1996, 118, 12465. (b)
Zeng, H.; Li, J.; Wang, Z. L.; Liu, J. P.; Sun, S. H. Nano Lett. 2004, 4,
187.
(4) (a) Perez, J. M.; O’Loughin, T.; Simeone, F. J.; Weissleder, R.; Josephson,
L. J. Am. Chem. Soc. 2002, 124, 2856. (b) Dyal, A.; Loos, K.; Noto, M.;
Chang, S. W.; Spagnoli, C.; Shafi, K. V. P. M.; Ulman, A.; Cowman,
M.; Gross, R. A. J. Am. Chem. Soc. 2003, 125, 1684.
(5) (a) Gu, H.; Ho, P.-L.; Tsang, K. W.; Wang, L.; Xu, B. J. Am. Chem. Soc.
2003, 125, 15702. (b) Gu, H. W.; Ho, P. L.; Tsang, K. W. T.; Yu, C. W.;
Xu, B. Chem. Commun. 2003, 1966.
(6) (a) Lyon, J. L.; Fleming, D. A.; Stone, M. B.; Schiffer, P.; Williams, M.
E. Nano Lett. 2004, 4, 719. (b) Zhang, Y.; Kohler, N.; Zhang, M.
Biomaterials 2002, 23, 1553. (c) Lu, Y.; Yin, Y. D.; Mayers, B. T.; Xia,
Y. N. Nano Lett. 2002, 2, 183.
(7) Chen, L. X.; Liu, T.; Thurnauer, M. C.; Csencsits, R.; Rajh, T. J. Phys.
Chem. B 2002, 106, 8539.
(8) Rajh, T.; Chen, L. X.; Lukas, K.; Liu, T.; Thurnauer, M. C.; Tiede, D.
M. J. Phys. Chem. B 2002, 106, 10543.
(9) Gu, H. W.; Xu, B.; Rao, J. C.; Zheng, R. K.; Zhang, X. X.; Fung, K. K.;
Wong, C. Y. C. J. Appl. Phys. 2003, 93, 7589.
(10) Supporting Information.
(11) Xu, C.; Xu, K.; Gu, H.; Zhong, X.; Guo, Z.; Zheng, R. K.; Zhang, X. X.;
Xu, B. J. Am. Chem. Soc. 2004, 126, 3392.
(12) Rajh, T.; Saponjic, Z.; Liu, J.; Dimitrijevic, N. M.; Scherer, N. F.; Vega-
Arroyo, M.; Zapol, P.; Curtiss, L. A.; Thurnauer, M. C. Nano Lett. 2004,
4, 1017 and references therein.
The procedure and condition of using 6 to isolate proteins is
similar to our previously reported process.11 After washing away
the physically absorbed proteins on 6 or the residual protein
solutions by deionized water, we used 10 and 500 mM of imidazole
elutions to sequentially wash the protein-bound nanoparticles. Figure
2A shows the imidazole elutions contain only the target protein
(6xHis-GFP, lanes 4, 5, and 7). Since there is no other protein being
washed off even by the low concentration (10 mM) imidazole
elution (Figure 2A, lanes 4 and 6), 6 indeed enhances the specificity
of NTA-Ni2+ to bind with histidine-tagged proteins. Control
experiment shows that the amount of GFP absorbed on 5 is almost
negligible when there is no chelation of Ni2+ ions with the NTA
groups.10 Both 6a and 6b can be regenerated and reused,10
suggesting that the bonding between DA and iron oxide is stable
at high salt concentration and the presence of sodium dodecyl
sulfonate (the cell lysate contains 0.5 M NaCl, 20 mM Tris-Cl,
and 2% SDS).
JA0464802
9
J. AM. CHEM. SOC. VOL. 126, NO. 32, 2004 9939