Journal of the American Chemical Society
Page 6 of 8
19.
Howell, J. G.; Li, Y.-P.; Bell, A. T., Propene Metathesis over
A Study of Active Site
AUTHOR INFORMATION
Supported Tungsten Oxide Catalysts:
Formation. ACS Catal. 2016, 6, 7728-7738.
20.
Propylene Metathesis by Supported WOx/SiO2 Catalysts. ACS Catal.
2017, 7, 573-580.
21.
State Metal–Carbon Double Bonds. Organometallics 2017, 36, 1884-
1
2
3
4
5
6
7
8
Corresponding Author
* ccoperet@ethz.ch
Lwin, S.; Wachs, I. E., Catalyst Activation and Kinetics for
ACKNOWLEDGMENT
Schrock, R. R.; Copéret, C., Formation of High-Oxidation-
The authors are grateful to the Swiss National Foundation
(SNF) for financial support of this work (grant no.
200021L_157146). DM acknowledges support from the ETHZ
Postdoctoral Fellowship Program and from the Marie Curie
Actions for People COFUND Program.
1892.
22.
disproportionation of propylene over a tungsten oxide on silica
catalyst. J. Catal. 1973, 28, 83-91.
Luckner, R. C.; Wills, G. B., Transient kinetics of the
9
23. Lwin, S.; Li, Y.; Frenkel, A. I.; Wachs, I. E., Nature of WOx
Sites on SiO2 and Their Molecular Structure–Reactivity/Selectivity
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Relationships for Propylene Metathesis. ACS Catal. 2016, 6, 3061-3071.
24.
H.; Tsurugi, H.; Mashima, K.; Safonova, O.; Copéret, C., Low
Temperature Activation of Supported Metathesis Catalysts by
Organosilicon Reducing Agents. ACS Cent. Sci. 2016, 2, 569-576.
REFERENCES
Mougel, V.; Chan, K.-W.; Siddiqi, G.; Kawakita, K.; Nagae,
1.
Grubbs, R. H.; Chang, S., Recent advances in olefin
metathesis and its application in organic synthesis. Tetrahedron 1998,
54, 4413-4450.
25.
Yamamoto, K.; Chan, K. W.; Mougel, V.; Nagae, H.; Tsurugi,
2.
Fürstner, A., Olefin Metathesis and Beyond. Angew. Chem.
H.; Safonova, O. V.; Mashima, K.; Coperet, C., Silica-supported
isolated molybdenum di-oxo species: formation and activation with
organosilicon agent for olefin metathesis. Chem. Commun. 2018, 54,
3989-3992.
Int. Ed. 2000, 39, 3012-3043.
3. Schrock, R. R.; Hoveyda, A. H., Molybdenum and Tungsten
Imido Alkylidene Complexes as Efficient Olefin-Metathesis Catalysts.
Angew. Chem. Int. Ed. 2003, 42, 4592-4633.
26.
Chan, K. W.; Lam, E.; D’Anna, V.; Allouche, F.; Michel, C.;
4.
Mol, J. C., Industrial applications of olefin metathesis. J.
Safonova, O. V.; Sautet, P.; Copéret, C., C–H Activation and Proton
Transfer Initiate Alkene Metathesis Activity of the Tungsten(IV)–Oxo
Complex. J. Am. Chem. Soc. 2018, 140, 11395-11401.
Mol. Catal. A: Chem. 2004, 213, 39-45.
5. Schrock, R. R., Multiple Metal–Carbon Bonds for Catalytic
Metathesis Reactions (Nobel Lecture). Angew. Chem. Int. Ed. 2006, 45,
27.
Schrock, R. R.; DePue, R. T.; Feldman, J.; Yap, K. B.; Yang,
3748-3759.
D. C.; Davis, W. M.; Park, L.; DiMare, M.; Schofield, M., Further
studies of imido alkylidene complexes of tungsten, well-characterized
olefin metathesis catalysts with controllable activity. Organometallics
1990, 9, 2262-2275.
6.
catalysed olefin metathesis reaction. Nature 2007, 450, 243.
7. Hoveyda, A. H.; Malcolmson, S. J.; Meek, S. J.; Zhugralin, A.
Hoveyda, A. H.; Zhugralin, A. R., The remarkable metal-
R., Catalytic Enantioselective Olefin Metathesis in Natural Product
Synthesis. Chiral Metal-Based Complexes that Deliver High
Enantioselectivity and More. Angew. Chem. Int. Ed. 2009, 49, 34-44.
8. Grubbs, R. H.; Wenzel, A. G.; O’Leary, D. J.; Khosravi, E.,
Handbook of Metathesis, 3 Vol. Set, 2nd ed. Wiley VCH: Weinheim:
28.
Bonitatebus, P. J.; Schrock, R. R.; Hoveyda, A. H., Alkylidene and
Metalacyclic Complexes of Tungsten that Contain Chiral
Tsang, W. C. P.; Hultzsch, K. C.; Alexander, J. B.;
a
Biphenoxide Ligand. Synthesis, Asymmetric Ring-Closing Metathesis,
and Mechanistic Investigations. J. Am. Chem. Soc. 2003, 125, 2652-
2666.
2015.
9.
Higman, C. S.; Lummiss, J. A. M.; Fogg, D. E., Olefin
29.
Lopez, L. P. H.; Schrock, R. R., Formation of Dimers That
Metathesis at the Dawn of Implementation in Pharmaceutical and
Specialty-Chemicals Manufacturing. Angew. Chem. Int. Ed. 2016, 55,
3552-3565.
10. Nguyen, T. T.; Koh, M. J.; Shen, X.; Romiti, F.; Schrock, R.
R.; Hoveyda, A. H., Kinetically controlled E-selective catalytic olefin
metathesis. Science 2016, 352, 569.
11. Koh, M. J.; Nguyen, T. T.; Lam, J. K.; Torker, S.; Hyvl, J.;
Schrock, R. R.; Hoveyda, A. H., Molybdenum chloride catalysts for Z-
Contain Unbridged W(IV)/W(IV) Double Bonds. J. Am. Chem. Soc.
2004, 126, 9526-9527.
30.
Lopez, L. P. H.; Schrock, R. R.; Müller, P., Dimers that
Contain Unbridged W(IV)/W(IV) Double Bonds. Organometallics
2006, 25, 1978-1986.
31. Arndt, S.; Schrock, R. R.; Müller, P., Synthesis and Reactions
of Tungsten Alkylidene Complexes That Contain the 2,6-
Dichlorophenylimido Ligand. Organometallics 2007, 26, 1279-1290.
32.
selective olefin metathesis reactions. Nature 2017, 542, 80.
Coperet, C.; Allouche, F.; Chan, K. W.; Conley, M. P.; Delley,
Solans-Monfort, X.; Coperet, C.; Eisenstein, O., Shutting
12.
Down Secondary Reaction Pathways: The Essential Role of the
Pyrrolyl Ligand in Improving Silica Supported d0-ML4 Alkene
Metathesis Catalysts from DFT Calculations. J. Am. Chem. Soc. 2010,
132, 7750-7757.
M. F.; Fedorov, A.; Moroz, I. B.; Mougel, V.; Pucino, M.; Searles, K.;
Yamamoto, K.; Zhizhko, P. A., Bridging the Gap between Industrial
and Well-Defined Supported Catalysts. Angew. Chem. Int. Ed. 2018,
57, 6398-6440.
13. Schrock, R. R., Recent Advances in High Oxidation State
Mo and W Imido Alkylidene Chemistry. Chem. Rev. 2009, 109, 3211-
33.
Copéret, C.; Chabanas, M.; Petroff Saint-Arroman, R.;
Basset, J.-M., Homogeneous and Heterogeneous Catalysis: Bridging
the Gap through Surface Organometallic Chemistry. Angew. Chem.
Int. Ed. 2003, 42, 156-181.
3226.
14.
Metal Oxide Catalysts. ACS Catal. 2014, 4, 2505-2520.
15. Westhoff, R.; Moulijn, J. A., Reduction and activity of the
metathesis catalyst WO3/SiO2. J. Catal. 1977, 46, 414-416.
16. Andreini, A.; Mol, J. C., Activity of supported tungsten
Lwin, S.; Wachs, I. E., Olefin Metathesis by Supported
34.
Copéret, C.; Comas-Vives, A.; Conley, M. P.; Estes, D. P.;
Fedorov, A.; Mougel, V.; Nagae, H.; Núñez-Zarur, F.; Zhizhko, P. A.,
Surface Organometallic and Coordination Chemistry toward Single-
Site Heterogeneous Catalysts: Strategies, Methods, Structures, and
Activities. Chem. Rev. 2016, 116, 323-421.
oxide catalysts for the metathesis of propene. J. Colloid Interface Sci.
1981, 84, 57-65.
17. Basrur, A. G.; Patwardhan, S. R.; Was, S. N., Propene
metathesis over silica-supported tungsten oxide catalyst—Catalyst
35.
Copéret, C., Single-Sites and Nanoparticles at Tailored
Interfaces Prepared via Surface Organometallic Chemistry from
Thermolytic Molecular Precursors. Acc. Chem. Res. 2019.
36.
Amakawa, K.; Sun, L.; Guo, C.; Hävecker, M.; Kube, P.;
induction mechanism. J. Catal. 1991, 127, 86-95.
18.
Wachs, I. E.; Lwin, S.; Frenkel, A. I.; Patlolla, A.; Hermann, K.; Schlögl,
R.; Trunschke, A., How Strain Affects the Reactivity of Surface Metal
Oxide Catalysts. Angew. Chem. Int. Ed. 2013, 52, 13553-13557.
37. Delley, M. F.; Praveen, C. S.; Borosy, A. P.; Núñez-Zarur, F.;
Comas-Vives, A.; Copéret, C., Olefin polymerization on Cr(III)/SiO2:
Ding, K.; Gulec, A.; Johnson, A. M.; Drake, T. L.; Wu, W.;
Lin, Y.; Weitz, E.; Marks, L. D.; Stair, P. C., Highly Efficient Activation,
Regeneration, and Active Site Identification of Oxide-Based Olefin
Metathesis Catalysts. ACS Catal. 2016, 6, 5740-5746.
ACS Paragon Plus Environment