G Model
CCLET 3421 1–5
S. Abdolmohammadi, S. Karimpour / Chinese Chemical Letters xxx (2015) xxx–xxx
5
[18] V.K. Tandon, M. Vaish, S. Jain, D.S. Bhakuni, R.C. Srimal, Synthesis, carbon-13 NMR 249
184
4. Conclusion
and hypotensive action of 2,3-dihydro-2,2-dimethyl-4H-naphtho[1,2-b]pyran-4- 250
one, Indian J. Pharm. Sci. 53 (1991) 22–23.
251
185
186
187
188
189
190
191
192
193
In summary, we have developed an efficient and less wasteful
manufacturing method for the synthesis of some of quinazolinone
and chromeno[d]pyrimidinone derivatives from aryl aldehydes,
urea/thiourea and active methylene compounds, including dime-
done or 4-hydroxycoumarin, using CuI NPs as reusable and
inexpensive heterogeneous catalysts under solvent-free condi-
tions. This new catalytic method has several advantages including
high yields of products, short reaction time, simple operation and
use of reusable, non-toxic and inexpensive catalyst.
[19] M. Longobardi, A. Bargagna, E. Mariani, P. Schenone, E. Marmo, 2H-[1]benzothie- 252
pino [5,4-b]pyran derivatives with local anesthetic and antiarrhythmic activities, 253
Farmaco 45 (1990) 399–413.
254
[20] H. Bedair, A. El-Hady, S. Abd El-Latif, H. Fakery, M. El-Agrody, 4-Hydroxycoumarin 255
in heterocyclic synthesis part III. Synthesis of some new pyrano[2,3-d]pyrimidine, 256
2-substituted[1,2,4]triazolo[1,5-c]pyrimidine and pyrimido[1,6-b][1,2,4]triazine 257
derivatives, Farmaco 55 (2000) 708–714.
258
[21] M.M. Heravi, K. Bakhtiari, V. Zadsirjan, F. Bamoharram, Aqua mediated synthesis 259
of substituted 2-amino-4H-chromenes catalyzed by green and reusable Preyssler 260
heteropolyacid, Bioorg. Med. Chem. Lett. 17 (2007) 4262–4265.
261
[22] C. Bruhlmann, F. Ooms, P. Carrupt, et al., Coumarins derivatives as dual inhi- 262
bitors of acetylcholinesterase and monoamine oxidase, J. Med. Chem. 44 (2001) 263
3195–3198.
264
[23] S.R. Kesten, T.G. Heffner, S.J. Johnson, et al., Design, synthesis, and evaluation of 265
chromen-2-ones as potent and selective human dopamine D4 antagonists, J. Med. 266
194
195
Acknowledgment
Chem. 42 (1999) 3718–3725.
267
Shahrzad Abdolmohammadi is pleased to acknowledge the
[24] V.P. Reddy, A.V. Kumar, K. Swapna, K.R. Rao, Copper oxide nanoparticle-catalyzed 268
coupling of diaryl diselenide with aryl halides under ligand-free conditions, Org. 269
196 Q3 financial support from the Research Council of East Tehran Branch,
197
Lett. 11 (2009) 951–953.
[25] N. Mittapelly, B.R. Reguri, K. Mukkanti, Copper oxide nanoparticles-catalyzed direct 271
N-alkylation of amines with alcohols, Der Pharma Chemica 3 (2011) 180–189.
270
Islamic Azad University.
272
[26] S. Abdolmohammadi, M. Afsharpour, Facile one-pot synthesis of pyrido[2,3- 273
d]pyrimidine derivatives over ZrO2 nanoparticles catalyst, Chin. Chem. Lett. 23 274
198
References
(2012) 257–260.
275
[27] S. Abdolmohammadi, S. Balalaie, A clean procedure for synthesis of pyrido[d]pyr- 276
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
[1] K. Chen, K. Wang, A.M. Kirichian, et al., In silico design, synthesis, and biological
evaluation of radioiodinated quinazolinone derivatives for alkaline phosphatase-
mediated cancer diagnosis and therapy, Mol. Cancer Ther. 5 (2006) 3001–3013.
[2] M.M. Aly, Y.A. Mohamed, W.M. Basyouni, Synthesis of some new 4(3H)-quina-
zolinone-2-carboxaldehyde thiosemicarbazones and their metal complexes and a
study on their anticonvulsant, analgesic, cytotoxic and antimicrobial activities –
part-1, Eur. J. Med. Chem. 45 (2010) 3365–3373.
[3] A. Kumar, C.S. Rajput, Synthesis and anti-inflammatory activity of newer quina-
zolin-4-one derivatives, Eur. J. Med. Chem. 44 (2009) 83–90.
[4] M. Kidwai, S. Saxena, M.K.R. Khan, S.S. Thukral, Synthesis of 4-aryl-7 7-dimethyl-
1,2,3,4,5,6,7,8-octahydroquinazoline-2-one/thione-5-one derivatives and evalu-
ation as antibacterials, Eur. J. Med. Chem. 40 (2005) 816–819.
[5] R. Dahiya, A.Kumar,R. Yadav, Synthesisandbiologicalactivityofpeptidederivatives
of iodoquinazolinones/nitroimidazoles, Molecules 13 (2008) 958–976.
[6] V. Alagarsamy, U.S. Pathak, S.N. Pandaya, D. Sriram, E. De Clercq, Anti-HIV and anti
bacterial activities of some disubstituted quinazolones and their bio-isoster
disubstituted thienopyrimidones, Indian J. Pharm. Sci. 66 (2000) 433–437.
[7] M.M. Ghorab, S.M.A. Gawad, M.S.A. El-Gaby, Synthesis and evaluation of some
new fluorinated hydroquinazoline derivatives as antifungal agents, Farmaco 55
(2000) 249–255.
[8] L. Alvey, S. Prado, V. Huteau, et al., A new synthetic access to furo[3,2-f]chromene
analogues of an antimycobacterial, Bioorg. Med. Chem. 16 (2008) 8264–8272.
[9] T. Symeonidis, M. Chamilos, J. Hadjipavlou-Litina, M. Kallitsakis, E. Litinas, Syn-
thesis of hydroxycoumarins and hydroxybenzo[f]- or [h]coumarins as lipid per-
oxidation inhibitors, Bioorg. Med. Chem. Lett. 19 (2009) 1139–1142.
[10] J.L. Wang, D. Liu, Z.J. Zhang, et al., Structure-based discovery of an organic
compound that binds Bcl-2 protein and induces apoptosis of tumor cells, Proc.
Natl. Acad. Sci. U.S.A. 97 (2000) 7124–7129.
imidine derivatives under solvent-free conditions catalyzed by ZrO2 nanoparti- 277
cles, Comb. Chem. High Throughput Screen. 15 (2012) 395–399.
278
[28] S. Abdolmohammadi, M. Mohammadnejad, F. Shafaei, TiO2 nanoparticles as an 279
efficient catalyst for the one-pot preparation of tetrahydrobenzo[c]acridines in 280
aqueous media, Z. Naturforsch. B 68b (2013) 362–366.
281
[29] S. Abdolmohammadi, S. Balalaie, M. Barari, F. Rominger, Three-component green 282
reaction of arylaldehydes 6-amino-1,3-dimethyluracil and active methylene 283
compounds catalyzed by Zr(HSO4)4 under solvent-free conditions, Comb. Chem. 284
High Throughput Screen. 16 (2013) 150–159.
285
[30] M. Tajbakhsh, E. Alaee, H. Alinezhad, et al., Titanium dioxide nanoparticles 286
catalyzed synthesis of Hantzsch esters and polyhydroquinoline derivatives, Chin. 287
J. Catal. 33 (2012) 1517–1522.
288
[31] D. Ma, C. Xia, CuI-catalyzed coupling reaction of b-amino acids or esters with aryl 289
halides at temperature lower than that employed in the normal Ullmann reaction. 290
Facile synthesis of SB-214857, Org. Lett. 3 (2001) 2583–2586.
291
[32] H. Zhang, Q. Cai, D. Ma, Amino acid promoted CuI-catalyzed C–N bond formation 292
between aryl halides and amines or N-containing heterocycles, J. Org. Chem. 70 293
(2005) 5164–5173.
294
[33] V.D. Bock, H. Hiemstra, J.H. van Maarseveen, CuI-catalyzed alkyne–azide ‘‘click’’ 295
cycloadditions from a mechanistic and synthetic perspective, Eur. J. Org. Chem. 1 296
(2006) 51–68.
297
[34] J. Safaei-Ghomi, A. Ziarati, R. Teymuri, CuI nanoparticles as new, efficient and 298
reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines, Bull. Korean 299
Chem. Soc. 33 (2012) 2679–2682.
[35] H.R. Kalita, A.J. Borah, P. Phukan, Mukaiyama aldol reaction of trimethylsilyl 301
enolate with aldehyde catalyzed by CuI, Indian J. Chem. 52B (2013) 289–292.
[36] Y.F. Liu, J.H. Zhan, J.H. Zeng, et al., Ethanolthermal synthesis to gamma-Cul 303
nanocrystals at low temperature, J. Mater. Sci. Lett. 20 (2001) 1865–1867.
[37] M. Ferhat, A. Zaoui, M. Certier, J.P. Dufour, B. Khelifa, Electronic structure of the 305
copper halides CuCl, CuBr and Cul, Mater. Sci. Eng. B 39 (1996) 95–100.
[38] H. Feraoun, H. Aourag, M. Certier, Theoretical studies of substoichiometric CuI, 307
Mater. Chem. Phys. 82 (2003) 597–601.
[39] M. Kidwai, S. Rastogi, Reaction of coumarin derivatives with nucleophiles in 309
aqueous medium, Z. Naturforsch. B 63 (b) (2008) 71–76.
300
302
304
306
308
310
[11] J.F. Cheng, A. Ishikawa, Y. Ono, T. Arrheniusa, A. Nadzana, Novel chromene
derivatives as TNF-a inhibitors, Bioorg. Med. Chem. Lett. 13 (2003) 3647–3650.
´
[12] D. Gree, S. Vorin, L. Manthati, et al., The synthesis of new, selected analogues of the
pro-apoptotic and anticancer molecule HA 14-1, Tetrahedron Lett. 49 (2008)
3276–3278.
[13] W. Kemnitzer, S. Jiang, H. Zhang, et al., Discovery of 4-aryl-2-oxo-2H-chromenes
as a new series of apoptosis inducers using a cell- and caspase-based high-
throughput screening assay, Bioorg. Med. Chem. Lett. 18 (2008) 5571–5575.
[14] M.M. Khafagy, A.H.F.A. El-Wahas, F.A. Eid, A.M. El-Agrody, Synthesis of halogen
derivatives of benzo[h]chromene and benzo[a]anthracene with promising anti-
microbial activities, Farmaco 57 (2002) 715–722.
[15] M. Kidwai, S. Saxena, M.K. Rahman Khan, S.S. Thukral, Aqua mediated synthesis of
substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents,
Bioorg. Med. Chem. Lett. 15 (2005) 4295–4298.
[16] B.S. Kumar, N. Srinivasulu, R.H. Udupi, et al., Efficient synthesis of benzo[g]-and
benzo[h]chromene derivatives by one-pot three-component condensation of
aromatic aldehydes with active methylene compounds and naphthols, Russ. J.
Org. Chem. 42 (2006) 1813–1815.
[17] R.R. Kumar, S. Perumal, P. Senthilkumar, P. Yogeeswari, D. Sriramm, An atom
efficient, solvent-free, green synthesis and antimycobacterial evaluation of 2-ami-
no-6-methyl-4-aryl-8-[(E)-arylmethylidene]-5,6,7,8-tetrahydro-4H-pyrano[3,2-
c]pyridine-3-carbonitriles, Bioorg. Med. Chem. Lett. 17 (2007) 6459–6462.
[40] K.S. Niralwad, B.B. Shingate, M.S. Shingare, Ultrasound-assisted one-pot synthesis 311
of octahydroquinazolinone derivatives catalyzed by acidic ionic liquid 312
[tbmim]Cl2/AlCl3, J. Chin. Chem. Soc. 57 (2010) 89–92.
313
[41] P.V. Badadhe, A.V. Chate, D.G. Hingane, et al., Microwave-assisted one-pot syn- 314
thesis of octahydroquinazolinone derivatives catalyzed by thiamine hydrochlo- 315
ride under solvent-free condition, J. Korean Chem. Soc. 55 (2011) 936–939.
[42] S. Karami, B. Karami, S. Khodabakhshi, Solvent-free synthesis of novel and known 317
316
octahydroquinazolinones/thiones by the use of ZrOCl2Á8H2O as a highly efficient 318
and reusable catalyst, J. Chin. Chem. Soc. 60 (2013) 22–26.
319
[43] A.M.A. Al-Kadasi, G.M. Nazeruddin, A facile and efficient ultrasound-assisted 320
chlorosulfonic acid catalyzed one-pot synthesis of benzopyranopyrimidines un- 321
der solvent-free conditions, J. Chem. Pharm. Res. 5 (2013) 204–210.
322
[44] F. Tavakoli, M. Salavati-Niasari, D. Ghanbari, K. Saberyan, S.M. Hosseinpour- 323
Mashkani, Application of glucose as a green capping agent and reductant to 324
fabricate CuI micro/nanostructures, Mater. Res. Bull. 49 (2014) 14–20.
325
Please cite this article in press as: S. Abdolmohammadi, S. Karimpour, Rapid and mild synthesis of quinazolinones and
chromeno[d]pyrimidinones using nanocrystalline copper(I) iodide under solvent-free conditions, Chin. Chem. Lett. (2015), http://