C O M M U N I C A T I O N S
Scheme 4. Possible Peroxide Intermediates
of air oxygen. This result also points to dispacamide A (2) as the
forerunner of oroidin (1). Natural compounds 3 and 4 are probably
hydrolysis products of oroidin (1) and not the precursors. We are
continuing our investigations in order to deepen our understanding
of the mechanism of the reaction and to discover additional
transformations linking the triad pyrrole-proline-guanidine with
other polycyclic “oroidin-based” alkaloids. The study of the pH-
dependent behavior of the key intermediate 17 is underway and
will be reported in due course.
Scheme 5 a
Acknowledgment. We thank Dr. M.-T. Martin for assistance
with NMR analysis and Dr. A. Zaparucha for fruitful discussions.
Supporting Information Available: Detailed experimental pro-
cedures and characterization for 2, 10-16. This material is available
a Reagents and conditions: (a) (i) AcOH, Br2, rt, (ii) CH2Cl2, TFA, rt,
74%; (b) CH3SO3H, 80 °C, 65%.
References
(1) Braekman, J.-C.; Daloze, D.; Stoller, C.; Van Soest, R. W. M. Biochem.
Syst. Ecol. 1992, 20, 417-431.
13 + 14 in 42% yield. Direct reaction of methyl ester 10 with Boc-
guanidine also gave 13 + 14 in 46% yield and the decarboxylated
compound 15 in 7% yield. To the best of our knowledge, this is
the first example of an oxidative rearrangement of a proline-
guanidine skeleton into a substituted 2-aminoimidazolinone. Im-
portantly, the transamination reaction occurs under mild conditions
and requires air oxygen. When the reaction with guanidine was
run under argon in degassed solvent, no rearrangement of proline
to 2-aminoimidazolinone was observed.
(2) (a) Forenza, S.; Minale, L.; Riccio, R.; Fattorusso, E. Chem. Commun.
1971, 1129-1130. (b) Garcia, E. E.; Benjamin, L. E.; Fryer, R. I. J. Chem.
Soc., Chem. Commun. 1973, 78-79.
(3) (a) Al-Mourabit, A.; Potier, P. Eur. J. Org. Chem. 2001, 237-243. (b)
Hoffmann, H.; Lindel, T. Synthesis 2003, 1753-1753.
(4) Cafieri, F.; Fattorusso, E.; Magoni, A.; Tagliatela-Scafati, O. Tetrahedron
Lett. 1996, 37, 3587-3590.
(5) (a) Ahond, A.; Bedoya Zurita, M.; Colin, M.; Fizames, C.; Laboute, P.;
Lavelle, F.; Laurent, D.; Poupat, C.; Pusset, J.; Pusset, M.; Thoison, O.;
Potier, P. C. R. Acad. Sci. Paris, Se´r. II 1988, 307, 145-148. (b)
D’Ambrosio, M.; Guerriero, A.; Debitus, C.; Pusset, J.; Leroy, S.; Pietra,
F. J. Chem. Soc., Chem. Commun. 1993, 1305-1306. (c) Pettit, G. R.;
McNulty, J.; Herald, D. L.; Doubek, D. L.; Chapuis, J.-C.; Schmidt, J.
M.; Tackett, L. P.; Boyd, M. R. J. Nat. Prod. 1997, 60, 180-183. (d)
Kinnel, R. B.; Gehrken, H.-P.; Scheuer, P. J. J. Am. Chem. Soc. 1993,
115, 3376-3377. For a review see ref 3b.
(6) (a) Assmann, M.; Lichte, E.; Pawlik, J.-R.; Ko¨ck, M. Mar. Ecol. Prog.
Ser. 2000, 207, 255-262. (b) Assmann, M.; Van Soest, R. W. M.; Ko¨ck,
M. J. Nat. Prod. 2001, 64, 1345-1347.
(7) Kitagawa, I.; Kobayashi, M.; Kitanaka, K.; Kido, M.; Kyogoku, Y. Chem.
Pharm. Bull. 1983, 31, 2321-2328.
(8) (a) Foley, L. H.; Bu¨chi, G. J. Am. Chem. Soc. 1982, 104, 1776-1777.
(b) The method has been developed by Horne and co-workers: Olofsen,
A.; Yakushijin, K.; Horne, D. A. J. Org. Chem. 1998, 63, 1248-1253.
(9) Poullennec, K.; Romo, D. J. Am. Chem. Soc. 2003, 125, 6344-6345.
(10) Andrade, P.; Willoughby, R.; Pomponi, S. A.; Kerr, R. G. Tetrahedron
Lett. 1999, 40, 4775-4778.
(11) (a) De Nanteuil, G.; Ahond, A.; Guilhem, J.; Poupat, C.; Tran Huu Dau,
E.; Potier, P.; Pusset, M.; Pusset, J.; Laboute, P. Tetrahedron 1985, 41,
6019-6033. (b) Albizati, K. F.; Faulkner, D. J. J. Org. Chem. 1985, 50,
4163-4164.
(12) (a) Hare, P. D.; Cress, P. D. Plant Growth Regul. 1997, 21, 79-102. (b)
Ballantyne, J. S.; Storey, K. B. Comp. Biochem. Physiol. 1983, 76B, 133-
138.
(13) Prepared according to a previously described procedure: (a) McElroy,
A. B.; Clegg, S. P.; Deal, M. J.; Ewan, G. B.; Hagan, R. M.; Ireland, S.
J.; Jordan, C. C.; Porter, B.; Ross, B. C.; Ward, P.; Whittington, A. R. J.
Med. Chem. 1992, 35, 2582-2591. (b) Ishibashi, N.; Kouge, K.; Shinoda,
I.; Kanihisa, H.; Okai, H. Ecol. Biol. Chem. 1988, 52, 819-827.
(14) Travert, N. Ph.D. thesis, Universite´ Paris XI, Orsay, 16 Sept 2003.
(15) (a) McCapra, F.; Chang, Y. C. Chem. Comm. 1966, 522-523 and
references therein. (b) Goto, T.; Kishi, Y. Angew. Chem., Int. Ed. Engl.
1968, 7, 407-414 and references therein. (c) McCapra, F.; Chang, Y. C.;
Francois, V. P. Chem. Commun. 1968, 22-23. (d) Schmidt, S. P.; Schuster,
G. B. J. Am. Chem. Soc. 1978, 100, 1966-1968.
The mechanism of the reaction seems to be close to that described
for bioluminescent reaction involving the formation of dioxetanones
in marine organisms.15
Formation of the byproduct 15 from 10 (Scheme 4) in the
presence of guanidine and air oxygen confirms the suggested
mechanism occurring through the species 16a-e. The presence of
guanidine is important for the catalyzed enolization/oxidation of
10 and 11 to 16a-e. Subsequent dismutation and intramolecular
transamination of 16b and 16c lead to 12 and the regioisomers 13
+ 14 respectively. Loss of CO2 from the dioxetanone 16e gives
15.
This is an efficient aerobic oxidation under atmospheric pressure
and without any catalyst or addition of oxidant. The intramolecular
nucleophilic substitution by guanidine and the dismutation of
peroxide lead to the cleavage of the crucial N-C bond of proline
and the formation of the 2-aminoimidazolinone 12, whose structure
is very close to those of natural dispacamide A (2) and mauritamide
A.16 The dispacamide A (2) synthesis (Scheme 5) was accomplished
by dibromination of the mixture 13 + 14 using 2 equiv of bromine,
followed by TFA-promoted Boc deprotection to 17 in 74% yield
for both steps. Subsequent dehydration by treatment with methane-
sulfonic acid gave dispacamide A (2) in 65% yield.17
In summary, a new biomimetic spontaneous conversion of proline
to 2-aminoimidazolinone derivatives using a self-catalyzed intra-
molecular transamination reaction together with peroxide dis-
mutation as a key step is described. The reaction requires the
N-acylation of proline by pyrrole-2-carboxylic acid and the presence
(16) Jime´nez, C.; Crews, P. Tetrahedron Lett. 1994, 35, 1375-1378.
(17) Note that heating of 12 or the protected derivatives (13 and 14) in TFA
did not lead to the dehydrated compound but to polycyclic derivatives.
The latest results will be published as a full paper in due course.
JA047574E
9
J. AM. CHEM. SOC. VOL. 126, NO. 33, 2004 10253