this reaction to either azidoglycosides 3 and acetylenic amino
acids 4 or acetylenic glycosides 5 and azide-containing amino
acids 6 would then result in the triazole-linked glycopeptides
1
and 2, respectively, which constitute a novel compound
7
class. Besides the aim of constructing stable glycopeptide
mimics, the resulting substituted triazoles may display
relevant biological activity against various targets.
8
To probe the viability of our approach, various glycosides
containing an anomeric azide functionality were prepared
and reacted with (R)-N-Boc-propargylglycine methyl ester
9
(
7, Table 1). The coupling was initially studied using
10
azidoglucoside (8) and azidogalactoside (9) in combination
with different Cu(I) species (e.g., CuI, CuCl, and CuCN)
and different bases (e.g., Et
were obtained using modified Sharpless conditions, involv-
ing 0.2 equiv of Cu(OAc) and 0.4 equiv of sodium ascorbate
in a 1:1 (v/v) mixture of H O and tert-BuOH. This eventually
provided the targeted glycoamino acids 15 and 16 in 98 and
3
N and DIPEA). Optimal results
6
2
2
88% yields (entries 1 and 2).
Under the same conditions, the benzylated glycosyl azide
1
011 reacted smoothly to give the corresponding adduct 17
with retention of the anomeric configuration (entry 3).
Likewise, the glucosamine- and galactosamine-derived
azides 11 and 12,12 respectively, reacted in an efficient
manner with the acetylenic amino acid 7 to give the
(4) For entries into C-glyco amino acid synthesis, see for example: (a)
Taylor, C. M. Tetrahedron 1998, 54, 11317. (b) Du, Y.; Lindhardt, R. J.
Tetrahedron 1998, 54, 9913. (c) Dondoni, A.; Marra, A. Chem. ReV. 2000,
100, 4395. (d) Vincent, S. P.; Schleyer, A.; Wong, C.-H. J. Org. Chem.
2000, 65, 4440. (e) Xu, X.; Fakha, G.; Sinou, D. Tetrahedron 2002, 58,
7539. (f) Lane, J. W.; Halcomb, R. L. J. Org. Chem. 2003, 68, 1348 (g)
Turner, J. J.; Leeuwenburgh, M. A.; Van der Marel, G. A.; Van Boom, J.
H. Tetrahedron 2001, 42, 8713. (h) Dondoni, A.; Mariotti, G.; Marra, A.;
Massi, A. Synthesis 2001, 14, 2129. (i) Westermann, B.; Walter, A.; Fl o¨ rke,
U.; Altenbach, H.-J. Org. Lett. 2001, 3, 1375. (j) McGarvey, G. J.; Benedum,
T. E.; Schmidtmann, F. W. Org. Lett. 2002, 4, 3591. (k) Dondoni, A.;
Giovannini, P. P.; Marra, A. J. Chem. Soc., Perkin Trans. 1 2002, 2380. (l)
Nolen, E. G.; Kurish, A. J.; Wong, K. A.; Orlando, M. D. Tetrahedron
Lett. 2003, 44, 2449. (m) Palomo, C.; Oiarbide, M.; Landa, A.; Concepci o´ n
Gonz a´ lez-Rego, M.; Garc ´ı a, J. M.; Gonz a´ les, A.; Odriozola, J. M.; Mart ´ı n-
Pastor, M.; Linden, A. J. Am. Chem. Soc. 2002, 124, 8637.
(
5) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67,
057.
6) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem. Int. Ed. 2002, 41, 2596.
7) For earlier reports on [3 + 2] cycloadditions of azidoglycosides and
acetylenes, see: (a) Br o¨ der, W.; Kunz, H. Carbohydr. Res. 1993, 249, 221.
3
(
(
(
(
b) Al-Masoudi, N. A.; Al-Soud, Y. A. Tetrahedron Lett. 2002, 43, 4021.
c) Marco-Contelles, J.; Jim e´ nez, C. A. Tetrahedron 1999, 55, 10511 (d)
a
Reagents and conditions: 1 equiv of azidoglycoside, 1 equiv of amino
acid derivative, 0.2 equiv of Cu(OAc)2, 0.4 equiv of sodium ascorbate, H2O/
Peto, C.; Batta, G.; Gyorgydeak, Z.; Sztaricskai, F. Carbohydr. Chem. 1996,
5, 465 and references therein
8) For examples of biologically active triazoles, see: (a) Alvarez, R.;
tert-BuOH 1:1 (v/v), rt, 16 h. b Yield of isolated product.
1
(
Velazquez, S.; San, F.; Aquaro, S.; De, C.; Perno, C. F.; Karlsson, A.;
Balzarini, J.; Camarasa, M. J. J. Med. Chem. 1994, 37, 4185. (b) Velazquez,
S.; Alvarez, R.; Perez, C.; Gago, F.; De, C.; Balzarini, J.; Camarasa, M. J.
AntiVir. Chem. Chemother. 1998, 9, 481. (c) Genin, M. J.; Allwine, D. A.;
Anderson, D. J.; Barbachyn, M. R.; Emmert, D. E.; Garmon, S. A.; Graber,
D. R.; Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.; Reischer,
R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J. C.; Schaadt, R. D.; Stapert,
D.; Yagi, B. H. J. Med. Chem. 2000, 43, 953.
corresponding products 18 and 19 in good yields (entries 4
and 5). The benzoyl-protected glucosamine 13 surprisingly
gave a somewhat lower yield of the glycosylamino acid 20
13
(
entry 6). Finally, the 2-azido functionalized glucose deriva-
1
4
tive 14 gave the desired coupling product in 77% yield
(entry 7). Clearly, there were no notable differences in
(9) Enantiopure propargylglycine is commercially available but in our
hands was prepared via an enzymatic resolution process: (a) Wolf, L. B.;
Sonke, T.; Tjen, K. C. M. F.; Kaptein, B.; Broxterman, Q. B.; Schoemaker,
H. E.; Rutjes, F. P. J. T. AdV. Synth. Catal. 2001, 343, 662. (b) Sonke, T.;
Kaptein, B.; Boesten, W. H. J.; Broxterman, Q. B.; Kamphuis, J.; Formaggio,
F.; Toniolo, C.; Rutjes, F. P. J. T.; Schoemaker, H. E. In StereoselectiVe
Biocatalysis; Patel, R. N., Ed.; Marcel Dekker: New York, 2000; p 23.
(12) Prepared via tetra-O-acetyl-R-D-pyranosyl chloride from the corre-
sponding glucosamine and galactosamine (ref 13) and subsequent treatment
with NaN3: Lehnhoff, S.; Goebel, M.; Karl, R. M.; Kloesel, R.; Ugi, I.
Angew. Chem., Int. Ed. 1995, 34, 1104.
(13) Prepared by reaction of the benzoylated thioglycoside with ICl and
Me3SiN3, respectively.
(14) Prepared from the corresponding glucosamine via azido transfer,
followed by acetylation: Alper, P. B.; Hung, S.; Wong, C.-H. Tetrahedron
Lett. 1996, 37, 6029.
(
10) Shiozaki, M.; Arai, M.; Macindoe, W. M.; Mochizuki, T.; Kurakata,
S.; Maeda, H.; Nishijima, M. Chem. Lett. 1996, 9, 735
11) Prepared from 2,3,4,6-tetra-O-benzylglucose by treatment with DBU
and DPPA: Mizuno, M.; Shioiri, T. Chem. Commun. 1997, 2165.
(
3124
Org. Lett., Vol. 6, No. 18, 2004