CrystEngComm
Paper
905.90, 795.05, 734.19 cm−1. Elemental analysis calcd for Notes and references
C4H15N21O4 (421.16): C 11.40, H 3.29, N 69.82, O 15.19%;
found: C 12.52, H 1.01, N 69.83, O 15.18%.
1 (a) N. Fischer, D. Izsák, T. M. Klapötke and J. Stierstorfer,
Chem. – Eur. J., 2013, 19, 8948–8957; (b) Q. H. Zhang, J. H.
Zhang, D. A. Parrish and J. M. Shreeve, Chem. – Eur. J.,
2013, 19, 11000–11006.
2 (a) D. Fischer, T. M. Klapötke and J. Stierstorfer, Angew.
Chem., Int. Ed., 2015, 54, 10299–10302; (b) S. T. Chen, Y. J.
Liu, Y. A. Feng, X. J. Yang and Q. H. Zhang, Chem. Commun.,
2020, 56, 1493–1496.
3 (a) T. G. Witkowski, E. Sebastiao, B. Gabidullin, A. Hu, F.
Zhang and M. Murugesu, ACS Appl. Energy Mater., 2018, 1,
589–593; (b) Q. Sun, X. Li, C. Bamforth, Q. H. Lin, M.
Murugesu and M. Lu, Sci. China Mater., 2020, 1–9; (c) Y.
Guo, H. X. Gao, B. Twamley and J. M. Shreeve, Adv. Mater.,
2007, 19, 2884–2888.
Sodium di(1′H-[1,5′-bitetrazol]-5-yl)amine (9). At
0 °C,
compound 2 (0.710 g, 2 mmol) was dissolved in 30 mL H2O.
To this solution, aq. 12 M HCl (0.2 mL, 2 mmol) was slowly
added dropwise over 1 minute. The reaction mixture was
stirred at 0 °C for 1 h, and a white precipitate was filtered
and washed with acetonitrile to give an amorphous white
1
solid. White solid, 0.616 g, yield: 86.6%. H NMR (500 MHz,
DMSO-d6): δ = 5.47 (s, 2H). 13C NMR (126 MHz, DMSO-d6): δ
˜
= 152.25, 151.79. IR (KBr): v = 3466.27, 3320.21, 2119.04,
1625.54, 1594.94, 1551.09, 1340.92, 1149.54, 1100.20, 1013.55,
973.26, 909.35, 791.95, 793.37, 580.70, 546.76 cm−1.
Elemental analysis calcd for C4H2NaN17 (311.17): C 15.44, H
0.65, N 76.52%; found: C 12.47, H 0.66, N 76.48%.
Bipotassium sodium di(1′H-[1,5′-bitetrazol]-5-yl)amine
(10). At 25 °C, compound 9 (0.311 g, 1 mmol) was suspended
in 15 mL acetonitrile and aqueous KOH (KOH: 0.112 g, 2
mmol; CH3CH2OH: 3 mL) was added drop-wise at room
temperature and stirred for 2 h; a white precipitate was
filtered and washed with acetonitrile to give an amorphous
white solid. White solid, 0.306 g, yield: 91.5%. 13C NMR (126
4 (a) S. Nimesh and H. G. Ang, Propellants, Explos., Pyrotech.,
2016, 41, 719–724; (b) J. T. Wu, J. Xu, W. Li and H. B. Li,
Propellants, Explos., Pyrotech., 2020, 45, 536–545; (c) D.
Fischer, T. M. Klapötke, M. Reymann, P. C. Schmid, J.
Stierstorfer and M. Sućeska, Propellants, Explos., Pyrotech.,
2014, 39, 550–557.
5 H. L. Xiong, H. W. Yang, C. J. Lei, P. J. Yang, W. Hu and
G. B. Cheng, Dalton Trans., 2019, 48, 14705–14711.
6 (a) P. He, J. J. Han, J. T. Wu, H. Z. Mei and J. G. Zhang, New
J. Chem., 2019, 43, 16454–16460; (b) Q. Wang, Y. L. Shao and
M. Lu, Chem. Commun., 2019, 55, 6062–6065.
7 T. M. Klapötke, F. A. Martin and J. Stierstorfer, Angew.
Chem., Int. Ed., 2011, 50, 4227–4229.
8 T. M. Klapötke, D. G. Piercey and J. Stierstorfer, Dalton
Trans., 2012, 41, 9451–9459.
9 D. Kumar, G. H. Imler, D. A. Parrish and J. M. Shreeve,
J. Mater. Chem. A, 2017, 5, 16767–16775.
10 T. Fendt, N. Fischer, T. M. Klapötke and J. Stierstorfer, Inorg.
Chem., 2011, 50, 1447–1458.
11 Q. H. Lin, Y. C. Li, C. Qi, W. Liu, Y. Wang and S. P. Pang,
J. Mater. Chem. A, 2013, 1, 6776–6785.
12 D. Fischer, T. M. Klapötke, J. Stierstorfer and N. Szimhardt,
Chem. – Eur. J., 2016, 22, 4966–4970.
13 (a) T. M. Klapötke, C. M. Sabaté and M. Rasp, Dalton
Trans., 2009, 1825–1834; (b) C. Cook, F. Habib, T. Aharen,
R. Clerac, A. Hu and M. Murugesu, Inorg. Chem., 2013, 52,
1825–1831.
˜
MHz, DMSO-d6): δ = 158.56, 155.78. IR (KBr): v = 1552.53,
1496.61, 1320.13, 1155.15, 1129.89, 1093.60, 1019.67, 743.18,
590.45, 575.09, 558.75, 546.83, 540.67 cm−1. Elemental
analysis calcd for C7H18N26 (387.35): C 12.40, N 61.47%;
found: C 12.43, N 61.44%.
Biammonium sodium di(1′H-[1,5′-bitetrazol]-5-yl)amine
(11). At 25 °C, compound 9 (0.311 g, 1 mmol) was suspended
in 15 mL acetonitrile and 27% aqueous ammonia (0.14 mL, 2
mmol) was added drop-wise at room temperature and stirred
for 2 h; a white precipitate was filtered and washed with
acetonitrile to give an amorphous white solid. White solid,
1
0.306 g, yield: 88.6%. H NMR (500 MHz, DMSO-d6): δ = 7.66
(s, 8H). 13C NMR (126 MHz, DMSO-d6): δ = 158.57, 155.03. IR
˜
v = 1632.95, 1584.70, 1553.32, 1520.45, 1424.11,
(KBr):
1163.56, 1078.19, 1030.06, 742.30, 563.12, 546.55 cm−1.
Elemental analysis calcd for C4H8NaN19 (345.23): C 13.92, H
2.34, N 77.09%; found: C 13.95, H 2.36, N 77.08%.
Conflicts of interest
14 (a) Y. A. Feng, H. Qiu, S. S. Yang, J. Du and T. L. Zhang,
Dalton Trans., 2016, 45, 17117–17122; (b) Y. H. Joo, B.
Twamley and J. M. Shreeve, Chem. – Eur. J., 2009, 15,
9097–9104.
15 (a) D. Fischer, J. L. Gottfried, T. M. Klapötke, K.
Karaghiosoff, J. Stierstorfer and T. G. Witkowski, Angew.
Chem., Int. Ed., 2016, 55, 16132–16135; (b) M. Freis, T. M.
Klapötke, J. Stierstorfer and N. Szimhardt, Inorg. Chem.,
2017, 56, 7936–7947.
16 (a) C. M. Bian, M. Zhang, C. Li and Z. M. Zhou, J. Mater.
Chem. A, 2015, 3, 163–169; (b) Y. X. Tang, C. L. He, L. A.
Mitchell, D. A. Parrish and J. M. Shreeve, J. Mater. Chem. A,
2016, 4, 3879–3885.
There are no conflicts to declare.
Acknowledgements
The authors are most grateful to Prof. Chong. Zhang (Nanjing
University of Science and Technology) for his help on the
detonation performance calculation and mechanical
sensitivity test. Special thanks to M.S. Ling Chen for her help
and professional advice on the NMR test and NMR spectral
analysis and we also sincerely thank Dr. Qi Sun (Beijing
Institute of Technology), M.S. Zhe. Xing and M.S. Siyuan.
Chen for their professional advice on article writing.
This journal is © The Royal Society of Chemistry 2021
CrystEngComm, 2021, 23, 5377–5384 | 5383