602 J. Chin. Chem. Soc., Vol. 57, No. 4A, 2010
Dube et al.
Ed. 2007, 46, 2823-2826.
accommodate normal C15, C16, C17, C18 and C19. What was
unexpected was the emergence of yet another capsule in the
presence of C19. A new capsule was formed that involved
two belts of glycolurils: a double expansion had taken
place.49 This new hyperextended capsule 2×38×2 (Fig. 11)
also accommodated some natural products such as capsaicin
and anandamide. The latter is the endogenous ligand for the
cannabanoid receptor of the brain.50
8. Deal, W. J. Jr.; Erlanger, B. F.; Nachmansohn, D. Proc. Natl.
Acad. Sci. USA 1969, 64, 1230-1234.
9. Banghart, M. R.; Mourot, A.; Fortin, D. L.; Yao, J. Z.;
Kramer, R. H.; Trauner, D. Angew. Chem. Int. Ed. 2009, 48,
9097-9101.
10. Shivanyuk, A.; Rebek, J. Jr. Angew. Chem. Int. Ed. 2003, 42,
684-686.
11. Heinz, T.; Rudkevich, D. M.; Rebek, J. Jr. Angew. Chem. Int.
Ed. 1999, 38, 1136-1139.
We tested even longer hydrocarbons such as C24 to
C29 and found another encapsulation complex involving
three glycoluril belts. The complete assembly comprises 15
molecules and there is evidence of coiling with the longer
guests.
12. Scarso, A.; Trembleau, L.; Rebek, J. Jr. Angew. Chemie, Int.
Ed. 2003, 42, 5499-5502.
13. Körner, S. K.; Tucci, F. C.; Rudkevich, D. M.; Heinz, T.;
Rebek, J. Jr. Chem. Eur. J. 2000, 6, 187-195.
14. Heinz, T.; Rudkevich, D.; Rebek, J. Jr. Nature 1998, 394,
764-766.
This behavior promises that spring-loaded capsules
of additional complexity can be devised in the future. For
the present, preliminary results reveal that even longer cap-
sules can be made with the simple recipe of 2, glycoluril 3
and ever longer alkanes. Is there a limit? We have reason to
think there is not. The multitude of forces that drive such
complex self-assembly are currently under investigation in
our laboratories and will be reported in due course.
15. Dube, H.; Ajami, D.; Rebek, J. Jr. Angew. Chem. Int. Ed.
2010, 49, 3192-3195.
16. Kang, J.; Rebek, J. Jr. Nature 1996, 382, 239-241.
17. Cram, D. J.; Choi, H.-J.; Bryant, J. A.; Knobler, C. B. J. Am.
Chem. Soc. 1992, 114, 7748-7765.
18. Gottschalk, T.; Jaun, B.; Diederich, F. Angew. Chem. Int. Ed.
2007, 46, 260-264.
19. Barrett, E. S.; Dale, T. J.; Rebek, J. Jr. J. Am. Chem. Soc.
2007, 129, 8818-8824; Castellano, R. K.; Craig, S. L.;
Nuckolls, C.; Rebek, J. Jr. J. Am. Chem. Soc. 2000, 122,
7876-7822.
ACKNOWLEDGEMENTS
We are grateful to the Skaggs Institute and the Na-
tional Institutes of Health (GM 27932) for financial sup-
port. The Alexander von Humboldt Stiftung provided a
Feodor Lynen Fellowship for H. D, who was also sup-
ported by the Swiss National Science Foundation (SNF). A
fellowship for F. D was generously provided by The French
Ministry of Foreign Affairs (Egide, Programme Lavoisier).
20. Ajami, D.; Rebek, J. Jr. J. Am. Chem. Soc. 2006, 128,
5314-5315.
21. Dabrowski, R.; Kenig, K.; Raszewski, Z.; Kedzierski, J.;
Sadowska, K. Mol. Cryst. Liq. Cryst. 1980, 61, 61-78.
22. Balzani, V.; Credi, A.; Venturi, M. In Molecular Devices
and Machines – A Journey into the Nanoworld; Wiley-VCH:
Weinheim, 2003; Cheapter 12.
23. Yoshizawa, M.; Klosterman, J. K.; Fujita, M. Angew. Chem.
Int. Ed. Engl. 2009, 48, 3418-3438.
Received March 25, 2010.
24. (a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F.
Angew. Chem. Int. Ed. Engl. 2000, 39, 3348-3391. (b) Bon-
net, S.; Collin, J.-P.; Koizumi, M.; Mobian, P.; Sauvage, J.-P.
Adv. Mater. 2006, 18, 1239-1250.
REFERENCES
1. Balzani, V.; Credi, A.; Venturi, M. Molecular Devices and
Machines – A Journey into the Nanoworld; Wiley-VCH:
Weinheim, Germany, 2003; pp 288-328.
25. Ajami, D.; Rebek, J. Jr. J. Am. Chem. Soc. 2006, 128,
15038-15039.
2. Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem. Int. Ed.
2007, 46, 72-191.
26. Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem. Int. Ed.
2007, 46, 72-191.
3. Shinkai, S.; Ogawa, T.; Nakaji, T.; Kusano, Y.; Manabe, O.
Tetrahedron Lett. 1979, 20, 4569-4572.
27. Jimenez, M.-C.; Dietrich-Buchecker, C.; Sauvage, J.-P.
Angew. Chem. Int. Ed. Engl. 2000, 39, 3284-3287.
28. Shinkai, S.; Nakaji, T.; Nishida, Y.; Ogawa, T.; Manabe, O.
J. Am. Chem. Soc. 1980, 102, 5860-5865.
4. Shinkai, S.; Nakaji, T.; Nishida, Y.; Ogawa, T.; Manabe, O.
J. Am. Chem. Soc. 1980, 102, 5860-5865.
5. Shinkai, S.; Nakaji, T.; Ogawa, T.; Shigematsu, K.; Manabe,
O. J. Am. Chem. Soc. 1981, 103, 111-115.
29. (a) Molecular Machines Special Issue: Acc. Chem. Res.
2001, 34, 409-522. (b) Raehm, L.; Sauvage, J.-P. Struct.
Bonding (Berlin) 2001, 99, 55-78.
6. Gloe, K. Macrocyclic Chemistry Current Trends and Future
Perspectives; Springer: Netherlands, 2005; pp 203-218.
7. Wang, Y.; Ma, N.; Wang, Z.; Zhang, X. Angew. Chem. Int.
30. (a) Barboiu, M.; Lehn, J.-M. Proc. Natl. Acad. Sci. USA.