Organic Letters
Letter
to isonitrile assimilation/degradation, another possible physio-
logical function of SfaF is to inactivate the overproduced or
accumulated chalkophore 1 in cells by hydrating the functional
group to prevent an endogenous disturbance of copper
utilization, thus contributing to the copper homeostasis of S.
thioluteus. Combined with the fact that SfaF, the “diisonitrile
inactivator”, is expected under different control from other
biosynthetic enzymes in the pathway, this “self-resistance”
hypothesis is also consistent with the high Michaelis−Menten
constant and the modest catalytic efficiency of SfaF. Beyond
that, SfaF is believed to play a role in chemical defense since
isonitrile natural products secreted by microorganisms in the
environment are generally antimicrobial due to their metal
affinity that leads to enzyme inhibition.
In conclusion, a rare isonitrile hydratase that leads to a
unique tandem hydration of the diisonitrile in S. thioluteus is
reported. From this point of view, our studies complement the
knowledge of isonitrile metabolism in microorganisms and
enrich the toolbox for enzymatic reactions, thereby providing a
mild method other than general acid catalysis for isonitrile
hydration in aqueous media. Moreover, our case showed that
isonitrile hydrating and biosynthetic enzymes can be closely
located. Accordingly, more cryptic isonitrile-generating BGCs
and underlying isonitrile natural products can be explored
through targeted genome mining based on this strategy.
REFERENCES
■
(
1) (a) Chang, C. W. J.; Scheuer, P. J. Marine isocyano compounds.
In Marine Natural Products; Springer Berlin Heidelberg: Berlin,
Heidelberg, 1993; pp 33−75. (b) Emsermann, J.; Kauhl, U.; Opatz, T.
Marine Isonitriles and Their Related Compounds. Mar. Drugs 2016,
14, 16. (c) Garson, M. J.; Simpson, J. S. Marine isocyanides and related
natural products-structure, biosynthesis and ecology. Nat. Prod. Rep.
004, 21, 164−79.
2) Burreson, B. J.; Scheuer, P. J. Isolation of a diterpenoid isonitrile
from a marine sponge. J. Chem. Soc., Chem. Commun. 1974, 1035−
036.
3) (a) Iengo, A.; Santacroce, C.; Sodano, G. Metabolism in Porifera.
X. On the intermediary of a formamide moiety in the biosynthesis of
isonitrile terpenoids in sponges. Experientia 1979, 35, 10−11.
(b) Hagadone, M. R.; Scheuer, P. J.; Holm, A. On the origin of the
isocyano function in marine sponges. J. Am. Chem. Soc. 1984, 106,
2
(
1
(
2
(
447−2448.
4) Goda, M.; Hashimoto, Y.; Shimizu, S.; Kobayashi, M. Discovery
of a novel enzyme, isonitrile hydratase, involved in nitrogen-carbon
triple bond cleavage. J. Biol. Chem. 2001, 276, 23480−5.
5) (a) Goda, M.; Hashimoto, Y.; Takase, M.; Herai, S.; Iwahara, Y.;
(
Higashibata, H.; Kobayashi, M. Isonitrile hydratase from Pseudomonas
putida N19−2. Cloning, sequencing, gene expression, and identi-
fication of its active acid residue. J. Biol. Chem. 2002, 277, 45860−5.
(b) Lakshminarasimhan, M.; Madzelan, P.; Nan, R.; Milkovic, N. M.;
Wilson, M. A. Evolution of new enzymatic function by structural
modulation of cysteine reactivity in Pseudomonas fluorescens
isocyanide hydratase. J. Biol. Chem. 2010, 285, 29651−61.
(
6) Sato, H.; Hashimoto, Y.; Fukatsu, H.; Kobayashi, M. Novel
ASSOCIATED CONTENT
■
isonitrile hydratase involved in isonitrile metabolism. J. Biol. Chem.
2010, 285, 34793−802.
7) Tabata, Y.; Hatsu, M.; Amano, S.; Shimizu, A.; Imai, S. SF2768, a
new isonitrile antibiotic obtained from Streptomyces. Sci. Rep. Meiji
Seika Kaisha 1995, 34, 1−9.
*
S
Supporting Information
(
(8) (a) Hagedorn, I.; Tonjes, H. Structure of xanthocillin, a new
antibiotic. Pharmazie 1956, 11, 409−10. (b) Yamaguchi, T.; Miyake,
Y.; Miyamura, A.; Ishiwata, N.; Tatsuta, K. Structure-activity
relationships of xanthocillin derivatives as thrombopoietin receptor
agonist. J. Antibiot. 2006, 59, 729−34.
Experimental procedures and materials and spectral data
(
9) (a) Marquez, J. A.; Horan, A. C.; Kalyanpur, M.; Lee, B. K.;
AUTHOR INFORMATION
■
Loebenberg, D.; Miller, G. H.; Patel, M.; Waitz, J. A. The hazimicins, a
new class of antibiotics. Taxonomy, fermentation, isolation, character-
ization and biological properties. J. Antibiot. 1983, 36, 1101−8.
(
b) Wright, J. J. K.; Cooper, A. B.; McPhail, A. T.; Merrill, Y.;
ORCID
Nagabhushan, T. L.; Puar, M. S. X-Ray crystal structure determination
and synthesis of the new isonitrile-containing antibiotics, hazimycin
factors 5 and 6. J. Chem. Soc., Chem. Commun. 1982, 1188−1190.
(c) Koyama, N.; Sato, H.; Tomoda, H. Discovery of new hazimycin
congeners from Kitasatospora sp. P07101. Acta Pharm. Sin. B 2015, 5,
5
(
64−8.
10) Wolf, D.; Schmitz, F. J. New diterpene isonitriles from the
Author Contributions
∥M.Z. and L.W. contributed equally.
sponge Phakellia pulcherrima. J. Nat. Prod. 1998, 61, 1524−7.
(11) Wang, L.; Zhu, M.; Zhang, Q.; Zhang, X.; Yang, P.; Liu, Z.;
Deng, Y.; Zhu, Y.; Huang, X.; Han, L.; Li, S.; He, J. Diisonitrile Natural
Product SF2768 Functions As a Chalkophore That Mediates Copper
Acquisition in Streptomyces thioluteus. ACS Chem. Biol. 2017, 12,
Notes
The authors declare no competing financial interest.
3
(
067−3075.
12) Crawford, J. M.; Portmann, C.; Zhang, X.; Roeffaers, M. B.;
ACKNOWLEDGMENTS
Clardy, J. Small molecule perimeter defense in entomopathogenic
bacteria. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 10821−6.
■
This work is supported by the National Natural Science
Foundation of China (31270136), the Natural Science
Foundation for Distinguished Young Scholars of Hubei
Province of China (No. 2018CFA069), the Fundamental
Research Funds for the Central Universities (No.
2
662018PY053), and the Open Project Program of Guangdong
Key Laboratory of Marine Materia Medica (LMM2018-4). We
thank Z. Zeng (College of Science, Huazhong Agricultural
University) for her assistance with NMR experiments.
D
Org. Lett. XXXX, XXX, XXX−XXX