10.1002/anie.201911153
Angewandte Chemie International Edition
COMMUNICATION
[18] W. Qiu, X. Xie, J. Qiu, W. Fang, R. Liang, X. Ren, X. Ji, G. Cui, A.
M. Asiri, G. Cui, B. Tang, X. Sun, Nat. Commun. 2018, 9, 3485.
[19] S. Zhang, C. Zhao, Y. Liu, W. Li, G. Wang, Y. Zhang, H. Zhang,
H. Zhao, Chem. Commun. 2019, 55, 2952–2955.
hydrogenation process of *NHNH to *NHNH2 is a downhill
pathway with G = 0.85 eV. The remaining hydrogenation and
NH3 desorption processes are consistent with the mixed
pathway. The hydrogenation of *NH2NH2 is a key process for
NRR. Our calculation results show that *NH2NH2 can be
hydrogenated to *NH2+*NH3 on V1+V2-1-decorated Fe-TiO2 (101)
surface with bi-Ti3+ (Figure 4), but V1-decorated Fe-TiO2 (101)
surface without bi-Ti3+ is not preferable, suggesting the synergy
effect of bi-Ti3+ on *NH2NH2 intermediate promotes *NH2NH2 to
*NH2+*NH3 conversion. Overall, above calculations reveal that
the introduction of Fe into TiO2 (101) spontaneously increases
the number of oxygen vacancy, and thus further promotes N2
activation. At the moment, the synergistic role of bi-Ti3+ arised
from oxygen vacancy is responsible for NRR process.
[20] S. Gao, Y. Zhu, Y. Chen, M. Tian, Y. Yang, T. Jiang, Z. Wang,
Mater. Today 2019, 28, 17–24.
[21] Y. Wang, M. Shi, D. Bao, F. Meng, Q. Zhang, Y. Zhou, K. Liu, Y.
Zhang, J. Wang, Z. Chen, D. Liu, Z. Jiang, M. Luo, L. Gu, Q.
Zhang, X. Cao, Y. Yao, M. Shao, Y. Zhang, X. Zhang, J. Chen,
J. Yan, Q. Jiang, Angew. Chem. Int. Ed. 2019, 58, 9464–9469.
[22] L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lu, S. Bak, Z. Liang, S.
Zhao, E. Stavitski, J. Luo, R. R. Adzic, H. Xin, Angew. Chem. Int.
Ed. 2019, 58, 2321–2325.
[23] L. Li, C. Tang, B. Xia, H. Jin, Y. Zheng, S. Qiao, ACS Catal.
2019, 9, 2902–2908.
[24] H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue, H. Wang,
Adv. Mater. 2018, 30, 1803694.
In summary, Fe is proven as an effective dopant to boost the
NRR activity of TiO2 catalyst. In 0.5 M LiClO4, Fe-doped TiO2
catalyst attains a high FE of 25.6 % and a large NH3 yield of
[25] W. Yin, B. Wen, C. Zhou, A. Selloni, L. Liu. Surf. Sci. Rep. 2018,
73, 58–82.
‒1
25.47 µg h‒1 mgcat. at ‒0.40 V, with high electrochemical and
[26] L. Yang, T. Wu, R. Zhang, H. Zhou, L. Xia, X. Shi, H. Zheng, Y.
Zhang, X. Sun, Nanoscale 2019, 11, 1555–1562.
structure stability. DFT calculation results reveal that the
introduction of Fe into TiO2 (101) spontaneously increases the
number of oxygen vacancy and thus further promotes N2
activation. The synergistic effect of bi-Ti3+ and oxygen vacancy
is responsible for the high catalytic performances. This work not
only offers an attractive earth-abundant nanocatalyst for NH3
electrosynthesis, but also would open up an exciting new
avenue to the rational design of Fe-doped transition metal
oxides for artificial N2 fixation with enhanced performance.
[27] R. Zhang, X. Ren, X. Shi, F. Xie, F. Zheng, X. Guo, X. Sun, ACS
Appl. Mater. Interfaces 2018, 10, 28251–28255.
[28] Y. Wang, K. Jia, Q. Pan, Y. Xu, Q. Liu, G. Cui, X. Guo, X. Sun,
ACS Sustainable Chem. Eng. 2019, 7, 117–122.
[29] Q. Qin, Y. Zhao, M. Schmallegger, T. Heil, J. Schmidt, R.
Walczak, G. Demner, H. Jiao, M. Oschatz, Angew. Chem. Int. Ed.
2019, 58, 13101–13106.
[30] T. Wu, W. Kong, Y. Zhang, Z. Xing, J. Zhao, T. Wang, X. Shi, Y.
Luo, X. Sun, Small methods 2019, 3, 1900356.
[31] N. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu, G.
Zheng, Nat. Commun. 2019, 10, 2877.
Keywords: TiO2 • Fe doping • N2 reduction electrocatalysis •
Ti3+ • density functional theory
[32] P. Jiang, Q. Liu, Y. Liang, J. Tian, A. M. Asiri, X. Sun, Angew.
Chem. Int. Ed. 2014, 126, 13069–13073.
[33] T. M. Buscagan, P. H. Oyala, J. C. Peters, Angew. Chem. Int. Ed.
2017, 129, 6921–6926.
[1] V. Smil, Nature 1999, 400, 415.
[34] S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi,
Angew. Chem. Int. Ed. 2017, 56, 2699–2703.
[2] R. Schlögl, Angew. Chem. Int. Ed. 2003, 42, 2004‒2008.
[3] T. Vegge, R. Z. Sørensen, A. Klerke, J. S. Hummelshøj, T.
Johannessen, J. K. Nørskov, C. H. Christensen, Indirect
Hydrogen Storage in Metal Ammines, British Welding Research
Association, 2008, p. 533–564.
[35] J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam,
D. Kim, Y. E. Sung, J. Choi, H. S. Park, ACS Sustainable Chem.
Eng. 2017, 5, 10986–10995.
[36] Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie, X. Sun.
Nanoscale 2018, 10, 14386–14389.
[4] I. Dybkjaer, Ammonia, Catalysis and Manufacture (Ed.: Nielsen,
A.), Springer, Heidelberg, 1995, p. 199–308.
[37] L. Hu, A. Khaniya, J. Wang, G. Chen, W. E. Kaden, X. Feng,
ACS Catal. 2018, 8, 9312–9319.
[5] V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M.
Stoukides, Catal. Today 2017, 286, 2–13.
[38] X. Zhu, H. Wang, Z. Liu, R. Zhao, H. Chen, T. Wang, F. Wang, Y.
Luo, Y. Wu, X. Sun, Chem. Commun. 2019, 55, 3987–3990.
[39] X. Zhao, X. Lan, D. Yu, H. Fu, Z. Liu, T. Mu, Chem. Commun.
2018, 54, 13010–13013.
[6] C. Guo, J. Ran, A. Vasileff, S. Qiao, Energ. Environ. Sci. 2018,
11, 45–56.
[7] R. Zhao, H. Xie, L. Chang, X. Zhang, X. Zhu, X. Tong, T. Wang,
Y. Luo, P. Wei, Z. Wang, X. Sun, EnergyChem 2019, 1, 100011.
[8] M. Shi, D. Bao, B. R. Wulan, Y. Li, Y. Zhang, J. Yan, Q. Jiang,
Adv. Mater. 2017, 29, 1606550.
[40] S. Xu, S. Pan, Y. Xu, Y. Luo, Y. Zhang, G. Li, J. Hazard. Mater.
2015, 283, 7–13.
[41] M. Zhou, J. Yu, B. Cheng, H. Yu, Mater. Chem. Phys. 2005, 93,
159–163.
[9] D. Bao, Q. Zhang, F. Meng, H. Zhong, M. Shi, Y. Zhang, J. Yan,
Q. Jiang, X. Zhang, Adv. Mater. 2017, 29, 1604799.
[10] H. Huang, L. Xia, X. Shi, A. M. Asiri, X. Sun, Chem. Commun.
2018, 54, 11427–11430.
[42] C. Wang, C. Bottcher, D. W. Bahnemann, J. K. Dohrmann, J.
Mater. Chem. 2003, 13, 2322–2329.
[43] J. Zhu, Z. Deng, F. Chen, J. Zhang, H. Chen, M. Anpo, J, Huang,
L. Zhang, Appl. Catal. B 2006, 62, 329–335.
[11] J. Wang, L. Yu, L. Hu, G. Chen, H. Xin, X. Feng, Nat. Commun.
2018, 9, 1795.
[44] H. Khan, I. Swati, Ind. Eng. Chem. Res. 2016, 55, 6619−6633.
[45] E. M. Neville, M. J. Mattle, D. Loughrey, B. Rajesh, M. Rahman,
J. M. D. MacElroy, J. A. Sullivan, K. R. Thampi, J. Phys. Chem.
C 2012, 116, 16511–16521.
[12] Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang,
H. Zhang, H. Zhao, Adv. Energy Mater. 2019, 9, 1803935.
[13] J. Zhao, J. Yang, L. Ji, H. Wang, H. Chen, Z. Niu, Q. Liu, T. Li, G.
Cui, X. Sun, Chem. Commun. 2019, 55, 4266–4269.
[14] Z. Wang, F. Gong, L. Zhang, R. Wang, L. Ji, Q. Liu, Y. Luo, P.
Gao, B. Li, B. Tang, X. Sun, Adv. Sci. 2018, 5, 1801182.
[15] J. Li, L. He, X. Liu, X. Cheng, G. Li, Angew. Chem. Int. Ed. 2019,
58, 1759–1763.
[46] C. Yang, X. Zhang, J. Qin, X. Shen, R. Yu, M. Ma, R. Liu, J.
Catal. 2017, 347, 36–44.
[47] B. Li, Z. Zhao, F. Gao, X. Wang, J. Qiu, Appl. Catal.
2014, 147, 958–964.
B
[48] D. Zhu, L. Zhang, R. E. Ruther, R. J. Hamers, Nat. Mater. 2013,
12, 836–841.
[16] X. Zhang, T. Wu, H. Wang, R. Zhao, H. Chen, T. Wang, P. Wei,
Y. Luo, Y. Zhang, X. Sun, ACS Catal. 2019, 9, 4609–4615.
[17] C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew.
Chem. Int. Ed. 2018, 57, 6073–6076.
[49] G. W. Watt, J. D. Chrisp, Anal. Chem. 1952, 24, 2006–2008.
[50] X. Ren, J. Zhao, Q. Wei, Y. Ma, G. Cui, A. M. Asiri, B. Li, B.
Tang, X. Sun, ACS Central Sci. 2019, 5, 116–121.
This article is protected by copyright. All rights reserved.