Angewandte Chemie International Edition
10.1002/anie.201915001
RESEARCH ARTICLE
of these catalysts follow a similar trend: pristine C < O-doped C <
S-doped C < Se-doped C < Te-doped C. This experimental
observation is in excellent agreement with our computationally
predicted trend in NRR activity for different dopant-incorporated
carbon catalysts (Figure 1a-b).
Foundation of Tianjin City (19JCJQJC61900), the Fok Ying Tung
Education Foundation (151008), and the Fundamental Research
Funds for the Central Universities Nankai University (63196010).
Calculations were performed on TianHe-1A at the National
Supercomputer Center, Tianjin.
As expected, Te- and Se-doped C achieve much better
NRR performance than pristine, O-, and S-doped C catalysts. The
Faradaic efficiency of Te- and Se-doped C catalysts reaches 4.67%
Keywords: nitrogen reduction reaction • electrocatalysis •
carbon materials •
@
–0.50 VRHE and 3.92% @ –0.45 VRHE (Figure 5c), which was
.3 and 5.3 times, respectively, greater than the maximum value
of pristine C (0.74% @ –0.55 VRHE). Meanwhile, Te- and Se-
doped C catalysts achieve the maximum average NH production
rates of 1.91 µg h–1 cm–2 @ –0.50 VRHE and 1.14 µg h–1 cm–2 @ –
.45 VRHE, respectively (Figure 5d). Besides, Te- and Se-doped
exhibit excellent intrinsic activity, and their TOFs are
6
[
1]
a) D. Sippel, M. Rohde, J. Netzer, C. Trncik, J. Gies, K. Grunau, I.
Djurdjevic, L. Decamps, S. L. A. Andrade, O. Einsle, Science 2018, 359,
3
1484-1489; b) J. G. Chen, R. M. Crooks, L. C. Seefeldt, K. L. Bren, R. M.
Bullock, M. Y. Darensbourg, P. L. Holland, B. Hoffman, M. J. Janik, A. K.
Jones, M. G. Kanatzidis, P. King, K. M. Lancaster, S. V. Lymar, P.
Pfromm, W. F. Schneider, R. R. Schrock, Science 2018, 360, eaar6611;
c) A. Good, Science 2018, 359, 869-870.
0
C
determined to be 9.67 × 10–5 and 3.90 × 10–5 s–1, respectively
(
Table S2 and Note S4). These values are comparable or better
[
[
2]
3]
a) Y. Wan, J. Xu, R. Lv, Mater. Today 2019, 27, 69-90; b) C. D. Lv, C. S.
Yan, G. Chen, Y. Ding, J. X. Sun, Y. S. Zhou, G. H. Yu, Angew. Chem.
Int. Ed. 2018, 57, 6073-6076.
than those of previously reported NRR catalysts (Table S2).
To correlate the intrinsic NRR activity with the nature of
heteroatom-doped C catalysts, the experimental TOFs are plotted
as a function of their corresponding sum of Gibbs free energy for
a) M. A. Shipman, M. D. Symes, Catal. Today 2017, 286, 57-68; b) M.
Jewess, R. H. Crabtree, ACS Sustainable Chem. Eng. 2016, 4, 5855-
2
N adsorption (Figure S28) and Gibbs free energy for the
5858; c) L. Ye, R. Nayak-Luke, R. Banares-Alcantara, E. Tsang, Chem
formation of *NNH (ΔGN2 + ΔG*NNH), given that overall NRR rate
2017, 3, 712-714; d) G. F. Chen, X. Cao, S. Wu, X. Zeng, L. X. Ding, M.
on carbon materials should be governed by the coverage of
Zhu, H. Wang, J. Am. Chem. Soc. 2017, 139, 9771-9774; e) X. Y. Cui,
C. Tang, Q. Zhang, Adv. Energy Mater. 2018, 8, 25; f) C. X. Guo, J. R.
Ran, A. Vasileff, S. Z. Qiao, Energy Environ. Sci. 2018, 11, 45-56; g) H.
P. Jia, E. A. Quadrelli, Chem. Soc. Rev. 2014, 43, 547-564; h) L. L.
Zhang, L. X. Ding, G. F. Chen, X. F. Yang, H. H. Wang, Angew. Chem.
Int. Ed. 2019, 58, 2612-2616; i) C. Tang, S.-Z. Qiao, Chem. Soc. Rev.
2
adsorbed N and energy barrier for *NNH formation. As shown in
Figure 5e, a clear linear relation is observed between ln (TOF)
and ΔGN2 + ΔG*NNH. Apparently, even more active carbon-based
catalysts can be expected by further lowering ΔGN2 + ΔG*NNH
,
which can be achieved by multiple-element doping and/or defect
creating.
2019, 48, 3166-3180; j) Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J.
Finally, the long-term durability of Te- and Se-doped C
catalysts were evaluated by five cycles of chronoamperometric
runs, showing no obvious change in the Faradaic efficiency and
Du, M. Shu, R. Si, J. Zeng, Adv. Mater. 2018, 30, 1803498.
[
4]
a) Z. Wang, C. Li, K. Deng, Y. Xu, H. Xue, X. Li, L. Wang, H. Wang, ACS
Sustainable Chem. Eng. 2019, 7, 2400-2405; b) L. L. Han, X. J. Liu, J. P.
Chen, R. Q. Lin, H. X. Liu, F. Lu, S. Bak, Z. X. Liang, S. Z. Zhao, E.
Stavitski, J. Luo, R. R. Adzic, H. L. L. Xin, Angew. Chem. Int. Ed. 2019,
3
the NH yield rate (Figure 5f). Moreover, no noticeable variation
of dopant content was observed after durability tests (Table S3).
These collective results demonstrate the good stability of Te- and
Se-doped C catalysts in NRR electrocatalysis.
58, 2321-2325; c) Y. C. Hao, Y. Guo, L. W. Chen, M. Shu, X. Y. Wang,
T. A. Bu, W. Y. Gao, N. Zhang, X. Su, X. Feng, J. W. Zhou, B. Wang, C.
W. Hu, A. X. Yin, R. Si, Y. W. Zhang, C. H. Yan, Nat. Catal. 2019, 2, 467-
4
67; d) L. Hui, Y. R. Xue, H. D. Yu, Y. X. Liu, Y. Fang, C. Y. Xing, B. L.
Conclusion
Huang, Y. L. Li, J. Am. Chem. Soc. 2019, 141, 10677-10683; e) J. Wang,
L. Yu, L. Hu, G. Chen, H. L. Xin, X. F. Feng, Nat. Commun. 2018, 9, 7; f)
Y. Yao, S. Q. Zhu, H. J. Wang, H. Li, M. H. Shao, J. Am. Chem. Soc.
In summary, we have systematically evaluated O-, S-, Se-, and
Te-doped C as potential NRR catalysts based on combined
theoretical and experimental investigations. We have
demonstrated that the heteroatom-doping induced charge
2018, 140, 1496-1501; g) Y. Wang, M. M. Shi, D. Bao, F. L. Meng, Q.
Zhang, Y. T. Zhou, K. H. Liu, Y. Zhang, J. Z. Wang, Z. W. Chen, D. P.
Liu, Z. Jiang, M. Luo, L. Gu, Q. H. Zhang, X. Z. Cao, Y. Yao, M. H. Shao,
Y. Zhang, X. B. Zhang, J. G. G. Chen, J. M. Yan, Q. Jiang, Angew. Chem.
Int. Ed. 2019, 58, 9464-9469; [h] Z.-H. Xue, S.-N. Zhang, Y.-X. Lin, H.
Su, G.-Y. Zhai, J.-T. Han, Q.-Y. Yu, X.-H. Li, M. Antonietti, J.-S. Chen, J.
Am. Chem. Soc. 2019, 141, 14976−14980; [i] Y.-X. Lin, S.-N. Zhang, Z.-
H. Xue, J. J. Zhang, H. Su, T.-J. Zhao, G.-Y. Zhai, X.-H. Li, M. Antonietti,
J.-S. Chen, Nat. Commun. 2019, 10, 32.
2
accumulation facilitates N adsorption on carbon atom and spin
polarization boosts the potential-determining step of the first
protonation to form *NNH. We found that Se and Te dopants
remarkably promote the electrocatalytic NRR activity. Our work
establishes the correlation between the electronic structure and
NRR performance for carbon-based materials. We believe it is
helpful for future rational design of carbon-based materials
towards NRR.
[
5]
a) L. M. Azofra, N. Li, D. R. MacFarlane, C. Sun, Energy Environ. Sci.
2016, 9, 2545-2549; b) H. Cheng, L.-X. Ding, G.-F. Chen, L. Zhang, J.
Xue, H. Wang, Adv. Mater. 2018, 30, 1803694; c) Y. Luo, G.-F. Chen, L.
Ding, X. Chen, L.-X. Ding, H. Wang, Joule 2019, 3, 279-289; d) H. Cheng,
P. Cui, F. Wang, L.-X. Ding, H. Wang, Angew. Chem. Int. Ed. 2019,
Acknowledgements
58,15541–15547.
This work was supported by the National Outstanding Youth
Science Fund Project of National Natural Science Foundation of
China (51722103), the National Natural Science Foundation of
China (51571149, 21576202 and 21773124), the Natural Science
[6]
a) X. Yang, J. Nash, J. Anibal, M. Dunwel, S. Kattel, E. Stavitski, K.
Attenkofer, J. G. Chen, Y. Yan, B. Xu, J. Am. Chem. Soc. 2018, 140,
13387-13391; b) H. Y. Jin, L. Q. Li, X. Liu, C. Tang, W. J. Xu, S. M. Chen,
L. Song, Y. Zheng, S. Z. Qiao, Adv. Mater. 2019, 31, 1902709.
6
This article is protected by copyright. All rights reserved.